

This document is issued for the party which commissioned it and for specific purposes connected with the above-captioned project only.

It should not be relied upon by any other party or used for any other purpose.

We accept no responsibility for the consequences of this document being relied upon by any other party, or being used for any other

purpose, or containing any error or omission which is due to an error or omission in data supplied to us by other parties.

This document contains confidential information and proprietary intellectual property. It should not be shown to other parties without

consent from us and from the party which commissioned it.

Mott MacDonald Restricted

Project: Geotechnical and Drainage Management Service

Our reference: n/a Your reference: n/a

Prepared by: Chloe Spurling Date: October 2024

Approved by: Matt Lane Checked by: Keith Halstead

Subject: REST API documentation

GDMS API documentation

Mott MacDonald

2

Mott MacDonald Restricted

1 Introduction

1.1 Scope of document

This document includes a relatively high-level description of the REST APIs used by the GDMS system. It

provides a general overview to enable users to start using the APIs to retrieve GDMS data, including worked

examples covering the main endpoints and different ways of retrieving data, but does not describe each

endpoint.

All endpoints are included in the Swagger JSON format files available from GDMS support. At present only

the main endpoints that are used to retrieve records are specifically documented by way of a summary within

these JSON files. Endpoints that allow data to be changed are not currently documented and are not

intended for third-party use at present.

1.2 Document conventions

Throughout this document URLs and snippets of JSON data or code are shown.

Endpoint URLs are preceded by their HTTP method (e.g. GET or POST) and where part of a URL is a

variable or parameter that needs to have a suitable value, then {curly braces} are used. For example:

GET https://api.gdms.assetia.cloud/Geotechnical/Assets/{assetId}

Where JSON or code is included in the document, a fixed width font is used. Within this, text in italics

provides a description of what would be included, such as the type of data or to indicate where example data

is shortened for brevity. Any curly braces are part of the sample JSON:

{

 "ID": GUID as a string value,

 "height": number,

 "description": string,

 other properties omitted

}

1.3 What is a REST API?

● REST = Representational State Transfer

● API = Application Programming Interface

An API is a means to allow communication between software programs or systems. A web API is specifically

a means for a web server to externally send and receive data, such as to allow a website or mobile

application to retrieve and display data from a remote web server. Web APIs may be intended only for use by

the software written by the operator of the API, or may be available for third party use. Most APIs will require

some form of authentication to control access, at application level and/or user level. Some web APIs allow

limited free use but require payment for larger numbers of requests, for commercial use of the data or to

access more valuable data.

Some examples of web APIs that can be used by third parties include:

● Network Rail APIs for real-time running of trains, displayed by websites such as OpenTrainTimes

● Met Office weather APIs to allow weather forecast and observation information to be extracted and used

by third parties

● Spotify APIs to allow the Spotify music catalogue to be browsed and searched by third party software

● What3words API to allow third party developers to convert between a geographical location and a

what3words text string (e.g. “beans.again.voting”).

https://api.gdms.assetia.cloud/Geotechnical/Assets/%7bassetId%7d

Mott MacDonald

3

Mott MacDonald Restricted

Web APIs expose “endpoints” which are web addresses used for a specific type of request or resource. For

example, the Spotify API has an endpoint that provides information about an artist, another endpoint that

provides information about an album, and other endpoints that allow searching of data. Web APIs that allow

data on the server to be changed will have separate endpoints depending on whether data is being

requested or sent.

Each valid request to an API endpoint will result in one response which, depending on the nature of the

request, may be a single record, multiple records, or just a response code indicating success or otherwise.

A request may also include data sent to the server in the following ways, as defined by the API endpoint:

● HTTP headers, particularly to include authorisation tokens or to specify the data format required (e.g.

JSON or XML, where the endpoint supports this)

● within the URL, e.g. query criteria:

– https://api.myassetsystem.com/assets?id=123

– https://api.myassetsystem.com/assets/123

● in the “payload” or body of the request, e.g. complex query criteria, a new record, binary data

REST is a software architecture for communications across the web, that sets out principles that a “RESTful

API” is expected to comply with, such as:

● separation of the client software / user interface from the server software

● a layered server architecture that is transparent to the client but allows scalability (e.g. by having a single

gateway for the client to interface with, that may be underlain by numerous load-balanced servers to

manage demand)

● proper use of methods defined in the HTTP standard (e.g. GET to request data, POST to send data for

the server to process).

REST is not considered a standard but uses other standards such as HTTP (to define the exact structures of

requests and responses, including response codes such as “200” for successful) and JSON or XML

standards to define the format of data transferred.

REST APIs may also implement standards such as OAuth for authorisation and OData for the structure of

requests and responses.

1.4 What is JSON?

● JSON = JavaScript Object Notation

JSON is a text-based, open standard file format for data interchange that is compatible with the JavaScript

programming language. Data consists of name-value pairs of properties. It is particularly used by web APIs

for transferring data, as an alternative to XML. Relevant standards are ECMA-404 and ISO/IEC 21778:2017.

https://api.myassetsystem.com/assets?id=123
https://api.myassetsystem.com/assets/123

Mott MacDonald

4

Mott MacDonald Restricted

An example of JSON data representing the details of a fictional person is shown below:1

{

 "person": {

 "firstName": "John",

 "lastName": "Smith",

 "age": 27,

 "isMarried": true,

 "address": null,

 "phoneNumbers": [

 {

 "type": "home",

 "number": "01632 123456"

 }, {

 "type": "office",

 "number": "01632 987654"

 }

]

 }

}

The example above comprises a “person” object with the properties: “firstName” (string), “lastName” (string),

“age” (number), “isMarried” (boolean), “address” (with no value) and “phoneNumbers”. “phoneNumbers” is an

array containing two values, each of which is an object with a “type” and “number” property. These terms are

explained further below.

Each property’s name and value are separated by a colon, and each property is separated from the next by

a comma. Property names are “double-quoted” and are conventionally (but not necessarily)

lowerCamelCase. It is not possible to include anything that is not part of the name-value data structure, such

as JavaScript comments.

Basic (“primitive”) data types of property values include:

● strings2 (e.g. "John")

● numbers3 (e.g. 27)

● booleans (true or false).

Other data types such as GUIDs or dates would be represented by a string (e.g. "2022-03-11") or a number

(e.g. milliseconds since epoch time). Any property that has no value must have the word null.

Where one or usually multiple sub-properties define the value of a single property (e.g. a “person” in the

example above), these are an object enclosed with {curly braces}.

Where a single property can have multiple values of the same type, these values are stored as an array

enclosed with [square brackets]. Arrays may either contain primitive values (e.g. an array of numbers such

as [1,3,5,7]) or objects such as “phoneNumbers” in the example. Each value within an array is normally (but

not necessarily) of the same type, and if they are objects are normally the same type of object with the same

properties. Where a JSON property may have multiple values, it will always be represented as an array even

if it currently contains only one value (e.g. [42]) or no values (i.e. []), to retain the same JSON data

structure.

1 Based on example at https://en.wikipedia.org/wiki/JSON. Phone numbers are from Ofcom’s range of numbers reserved for TV/film.

2 JSON strings can be of any length.

3 JSON does not differentiate between types of numbers, e.g. integers and floating point.

https://en.wikipedia.org/wiki/JSON

Mott MacDonald

5

Mott MacDonald Restricted

The JSON itself must also either be an object or an array, depending on the nature of its top-level data. In

the example above it is an object with a single “person” property, and therefore the JSON is enclosed with

{curly braces}. If the JSON had only included the array of phone numbers, it would have been:

[

 {

 "type": "home",

 "number": "01632 123456"

 },

 {

 "type": "office",

 "number": "01632 987654"

 }

]

White space is only significant in JSON within double quotes, so the JSON below is equivalent to above:

{"person":{"firstName":"John","lastName":"Smith","age":27,"married":true,"address":null,"phoneNum
bers":[{"type":"home","number":"01632 123456"},{"type":"office","number":"01632 987654"}]}}

1.5 How does GDMS implement web APIs?

The GDMS system has REST API endpoints for all actions that retrieve or update data in the system. This

document explains how to access the GDMS APIs and use them to retrieve data. Use of the API endpoints

for updating data is not permitted at present, except by use of the web and mobile applications provided by

the GDMS team.

The GDMS web application is a JavaScript application that runs within a web browser. This application

communicates with the GDMS servers using the APIs described in this document. Before attempting to use

any of the GDMS APIs it is recommended to observe the network activity within a web browser, while

browsing similar data to what you require. This will assist with identifying appropriate endpoints, and

understanding what is included with the request and in the response. Your requests should match those

made by GDMS as closely as possible to ensure the response is as intended; some requests may include

default properties which may appear unnecessary but if omitted altogether could lead to an invalid request or

unintended response.

In Chrome and Edge browsers this activity can be viewed in the Developer Tools window (press

CTRL+SHIFT+I when a GDMS browser tab is open). Then browse to the “Network” tab, filtered to

“Fetch/XHR” requests. This document does not further describe how to use the Developer Tools window; a

link to full documentation provided by your browser vendor is available within the “Help” menu.

This document does not describe the functionality of GDMS. Further information can be found at

https://help.gdms.assetia.cloud.

1.6 Note on worked examples

The worked examples attempt to cover all the different ways of requesting data, and all types of data, but not

all combinations of these. The principles covered in one example will be applicable to other types of data,

and this is usually explained, including any notable exceptions. The examples given mostly reflect the kind of

queries that could be required of GDMS data, but are also intended to illustrate how to formulate a request.

Numeric IDs and GUIDs are used in the examples but, in most cases, these are fictional and will not return

data if used as-is. Some figures and references shown in the example results are also fictionalised.

https://help.gdms.assetia.cloud/

Mott MacDonald

6

Mott MacDonald Restricted

2 General information

2.1 Authentication and authorisation

2.1.1 General access

Prior to being able to access any GDMS endpoint, authentication must be carried out using an existing

GDMS account. GDMS accounts are allocated to named individuals by the GDMS support team. Usernames

must be a valid email address that the named individual can access, and passwords must be set by that

individual and meet certain complexity requirements.

GDMS access permissions are defined per module, per Area (for modules that contain Area-specific data)

and at one of the following levels, which can vary between modules and/or Areas:

● Default (view-only)

● Edit (Default plus ability to edit most data)

● Manage (Default plus Edit plus ability to carry out actions such as approving or locking data and editing

locked down data that Edit users cannot)

● Review (Default plus occasionally ability to carry out a special action or the access level is used to

receive notifications or access dashboards)

Access permissions for a user account are the same whether the user accesses GDMS via the Assetia

website or via the APIs.

2.1.2 Authentication process

2.1.2.1 Process overview diagram

The diagram below provides an overview of the process for authenticating with GDMS, and obtaining and

refreshing authorisation tokens.

User attempts login

Does user exist?

Authorisation server forwards
username/password to users API

Is password correct?

Is user expired? Invalid login

No

Yes

No

Yes

No

Users API returns successful
result

 Authorisation server generates
an authorisation code using

tokens API

Login attempt is recorded using
logs API

Yes

Code is returned to client via
redirect

Client requests access token
with authorisation code

Authorisation server sends
authorisation code to tokens API

to generate access token

Is authorisation code
valid?

Access + refresh token
returned to client

Invalid authorisation codeDoes user exist?

Has user accepted
terms & conditions?

Client requests access token
with refresh token

Is refresh token valid?

Tokens API returns generated
tokens to authorisation server

Yes

Yes

Yes

No

No

No

Tokens API revokes existing
access token and returns new

one

Access + refresh token
returned to client

Yes

Invalid refresh token No

Mott MacDonald

7

Mott MacDonald Restricted

2.1.2.2 Process description

All authentication with GDMS must be carried out by opening the following website and allowing the user to

login. This interaction with the system cannot be completed via an API endpoint or by using your own login

form. The user must also have previously accessed GDMS and accepted its terms and conditions.

https://auth.gdms.assetia.cloud/login?client_id={clientId}&redirect_uri={redirectURL}

● {clientId} must be replaced by a value to identify your application, which can be obtained from GDMS

support

● {redirectURL} must be replaced by a URL that you wish to redirect to after the user has successfully

logged in4

After the user has logged in, the web browser will redirect to the URL specified. In addition, a “code”

parameter will be added to the redirection URL, i.e. “{redirectURL}?code={code}”. This code must be used by

your application to request authentication tokens from GDMS within 60 seconds of the user logging in.

To obtain authentication tokens, a POST request must be sent to https://auth.gdms.assetia.cloud/token with

the following as application/x-www-form-urlencoded data in the request body:

code: value that was returned in the “code” URL parameter after logging in,

client_id: your application’s identification code, as was used to access the login form,

grant_type: authorization_code,

redirect_uri: your application’s redirection URL, as was used to access the login form, with URL-
encoding5

For example:

code={code}&client_id={clientId}&grant_type=authorization_code&redirect_uri=https%3A%2F%2Fyoursit
e.com%2Floggedin

If the request is valid, the following JSON is returned:

{

 "access_token": string value for the access token

 "expires_in": number of seconds after which access_token expires (currently 3600, i.e. 1 hour)

 "refresh_token": string value for a token that allows the access token to be renewed

 "token_type": "Bearer"

}

All subsequent API requests to GDMS must include the following in the header:

Authorization: Bearer {access_token}

When the access token expires, API requests will return a 401 status code with the message “Authentication

token is invalid or expired”. To renew the access token, you must send a POST request to

https://auth.gdms.assetia.cloud/token/refresh with the following as application/x-www-form-urlencoded data

in the request body:

access_token: the value of the access_token that is being replaced

refresh_token: the value of the refresh_token that was assigned after initial authentication

grant_type: refresh_token

The above request returns data in the same format as that used for the initial access token. The

“refresh_token” will remain the same but the “access_token” will be different.

4 For a web application, {redirectURL} will be the URL of your application that you wish the user to be sent to, e.g. “https://yoursite.com/loggedin”. For a

native application the {redirectURL} can be something like “yourappname://callback”.

5 A URL-encoded version of “https://yoursite.com/loggedin” is “https%3A%2F%2Fyoursite.com%2Floggedin”.

https://auth.gdms.assetia.cloud/login?client_id=%7bclientId%7d&redirect_uri=%7bredirectURL%7d
https://auth.gdms.assetia.cloud/token
https://auth.gdms.assetia.cloud/token/refresh

Mott MacDonald

8

Mott MacDonald Restricted

Refresh tokens currently expire after 7 days. After this time, users must repeat the login process to continue

accessing the APIs.

If a user’s access is disabled on the system after obtaining authentication tokens, then access may be

possible for at most 1 hour until their current access_token expires. It will not be possible for them to refresh

the token or login again.

2.1.3 Authenticated user information

The Users API is not included in the documentation. The following endpoints can be used to return the

currently authenticated user’s ID, details and permissions, and to interpret the module and level GUIDs in the

permissions data:

● GET https://api.gdms.assetia.cloud/users/current

● GET https://api.gdms.assetia.cloud/users/{userId}/permissions

– where {userId} is the GUID “id” property returned by /users/current

● GET https://api.gdms.assetia.cloud/permissions/modules

● GET https://api.gdms.assetia.cloud/permissions/levels

Some of a user’s permissions may be associated with an Area ID. Area details are covered in the Network

Model and Locations API (see section 5).

If the user’s organisation details are required, these can be obtained with:

● GET https://api.gdms.assetia.cloud/users/organisations/{organisationId}

– where {organisationId} is the GUID “organisation” property returned by /users/current

If a user needs to update their information, then they must do this through the GDMS website.

Please note that it is only possible to obtain any user-related data through the API that the authenticated

user could access within the GDMS website. In particular, users can choose to make their details visible or

invisible to users in other organisations, and this applies both through the website and API.

2.2 Data formats

With very few exceptions, GDMS API endpoints receive and return data in JSON format. The system does

not support XML for requests or responses.

The returned JSON will only include ASCII text, and endpoints typically only return one type of object (either

a single record or an array of multiple records of the same type). Endpoints do not return nested data (e.g.

an asset record with its inventory items nested).

Some endpoints return map geometry data which is included within the JSON as a Well-known text (WKT)

string value, to Ordnance Survey (OS) grid (EPSG:27700). These will define a point, line or polygon for each

record, as appropriate to the type of record. Records with a point location may also include OS eastings and

northings as numeric properties.

Some endpoints return data in CSV format, equivalent to outputting a GDMS summary grid to CSV. There is

typically one endpoint for each of the main object types that will do this.

The Files API also includes an endpoint that will return a file in its original format.

https://api.gdms.assetia.cloud/users/current
https://api.gdms.assetia.cloud/users/%7buserId%7d/permissions
https://api.gdms.assetia.cloud/permissions/modules
https://api.gdms.assetia.cloud/permissions/levels
https://api.gdms.assetia.cloud/users/organisations/%7borganisationId%7d

Mott MacDonald

9

Mott MacDonald Restricted

2.3 URL structure

Most commonly used endpoint URLs follow one of the formats below. All GDMS URLs are case-insensitive.

Endpoints currently return only one principal type of record, rather than nesting related/child records within a

parent record, requiring separate requests for the related records. All requests must use HTTPS.

● https://api.gdms.assetia.cloud/{module}/{recordType}/{action}

– typically a GET or POST request for multiple records of recordType, with “action” being something like

“query”, “summary” or “csv”

● https://api.gdms.assetia.cloud/{module}/{recordType}/{recordId}

– typically a GET request to return a single record by its unique ID, or a PATCH request to update it

● https://api.gdms.assetia.cloud/{module}/{recordType}/{recordId}/{action}

– typically a POST or DELETE request to update or carry out an action on a single record by its unique

ID

There are some differences between modules, and these are described in further detail in the relevant

section of this document, along with the main “recordType” values.

2.4 Unique IDs

All records in GDMS are uniquely identified by a globally unique identifier (GUID). GUIDs are alphanumeric

strings that are generated by an algorithm which is deemed to be reliably unique worldwide, whoever

generates it and however often.6 These GUIDs are used not only as the “Id” of a record, but also as primary

and foreign keys to link related records across tables. GUIDs are unique not just for all records of a particular

type, but across all types of records.

Most of the principal types of records in GDMS also have a numeric “visible ID”, which is typically presented

to users as the “ID”. These are generated in numeric sequence of when a record is initially created within the

database, and can only be allocated by GDMS. Numeric IDs are unique for a particular type of record, but

not across different types of records. Numeric IDs are not used as keys to link records together, and

therefore endpoints that return child records will include the parent record’s GUID but not the parent record’s

numeric ID.7

Both the GUID and numeric ID remain unchanged for a record throughout its lifetime, e.g. during edits.

2.4.1 Returning a record based on numeric ID

All API endpoints for specific records require the record’s GUID. If the GUID for a record is not known but the

numeric ID is, then an appropriate endpoint that can return multiple records should be used, filtered by the

numeric ID value. Such endpoints usually return most if not all of the data fields for the record, so further

requests may not be needed, but the GUID is included to allow requests for the full record if required. In the

later sections of this document, some worked examples are provided.

2.5 Picklist fields

Where possible, text fields in GDMS have pre-defined options as opposed to being free text, to maintain

consistency within the data. These fields include those that a user would edit using a picklist (e.g. to select

the type of an asset) and some that are determined by the system as part of a workflow (e.g. the status of a

record).

6 One definition is that if every human each generated 600,000,000 GUIDs there would be a 50% probability of a duplicate. This is not universally unique

but within the context of GDMS is effectively guaranteed to be unique throughout the system.

7 For example an inventory item includes the GUID of its parent asset, but not the numeric ID of the asset.

https://api.gdms.assetia.cloud/%7bmodule%7d/%7brecordType%7d/%7baction%7d
https://api.gdms.assetia.cloud/%7bmodule%7d/%7brecordType%7d/%7brecordId%7d
https://api.gdms.assetia.cloud/%7bmodule%7d/%7brecordType%7d/%7brecordId%7d/%7baction%7d

Mott MacDonald

10

Mott MacDonald Restricted

The data for these fields is managed as follows, taking as an example the “type” attribute of an asset:

● Each module’s picklist data is stored within that module, separate from other modules.

● The “type” field is stored in the asset record as a GUID. The API passes GUIDs as string properties.

● The GUID equates to a picklist ID, which maps to a value (e.g. “Cutting”) and a picklist group (e.g.

“AssetTypes”) to determine the picklist entry as an option for a particular group.

– Picklist values are always treated as strings, even if their value is numeric.

● The picklist group ID is a GUID that can be used to retrieve all applicable picklist entries for that group,

and the name of the group.

The picklist data structure for an asset of type “Cutting” is shown below:

Some picklist values could be present in multiple picklist groups; for example “2” is valid as an asset

inspection return period and as a condition set classification. In this case, there are separate picklist entries

for each of the groups, each with a different picklist ID that will be for the entry in the applicable picklist

group.

API endpoints for picklist information vary by module but typically include:

● Named endpoints to return all of the available picklist entries for one group, e.g.:

– GET https://api.gdms.assetia.cloud/geotechnical/assettypes

– GET https://api.gdms.assetia.cloud/reports/picklists/types

● Some modules have endpoints to return a list of all picklist entries and picklist groups, e.g.:

– GET https://api.gdms.assetia.cloud/geotechnical/picklists

– GET https://api.gdms.assetia.cloud/geotechnical/picklistgroups

Picklist and picklist group data does not frequently change, and your application may therefore wish to cache

such data for a session.

2.6 Defining requests for multiple records

2.6.1 Overview

For each type of record in GDMS, one or more of the following POST endpoints are available that can return

one or more, or even all, of the records of that type:

● “query” is available for almost any type of record and typically returns data in its raw and complete format.

Picklist field criteria will usually need to be provided as GUIDs rather than readable values.

● “summary” is available in parallel with the “summary grids” on GDMS and typically returns data in a more

human-readable format. Picklist fields may be passed as values rather than GUIDs. Some additional

useful fields derived from related records may be included such as length, where this isn’t part of the raw

stored data.

● “csv” normally returns similar data to “summary” but in CSV format rather than JSON and without any

pagination. CSV files comply with RFC 4180 and the first line will contain field headings.

As described below, these requests may include a JSON object to sort and/or filter the records that the API

will return. To help understanding, the parts of this object are equated to the WHERE, ORDER BY, OFFSET

https://api.gdms.assetia.cloud/geotechnical/assettypes
https://api.gdms.assetia.cloud/reports/picklists/types
https://api.gdms.assetia.cloud/geotechnical/picklists
https://api.gdms.assetia.cloud/geotechnical/picklistgroups

Mott MacDonald

11

Mott MacDonald Restricted

and FETCH statements within a SQL query. Some specific requests allow additional fields to be included, as

defined in the Swagger JSON files. The general structure of the JSON object is:

{

 "offset": number,

 "limit": number,

 "filter": {object},

 "sort": [array of objects]

}

Each of the four properties is optional and they are described in the following sub-sections.

In addition, some specific endpoints support additional properties, for example to query all of the exploratory

locations for a specific geodataset ID or within a geographical area (see section 2.6.7), or to include or

exclude archived GAD records (see section 6.3.6). Some examples of these are given in later chapters.

This document has a relatively brief description, and it is recommended to use the summary grids in GDMS

to replicate the sorting or filtering you require to see how the request is generated, in conjunction with the

output in your web browser’s Developer Tools window or similar.

In addition to the POST endpoints some record types have GET endpoints that allow simple URL parameters

such as “offset” and “limit”. It is not practical to use these with the more complex “filter” and “sort”

parameters.

2.6.2 Response

Query and Summary endpoints will return results as follows:

{

 "results": array of records returned by the request,

 "count": total number of records matched by the filter criteria ignoring offset and limit,

 "total": total number of records that would be returned without any filter criteria

}

The number of records returned in the “results” array is not necessarily the same as the “count” or “total”.

That number can be determined in JavaScript simply as results.length.

CSV endpoints will return just the records without any other information.

2.6.3 No criteria

To return all records of a particular type with no filtering or sorting, then an empty JSON object { } must be

passed if the endpoint requires a body.

Such requests should not generally be made if they would return a large amount of data. Users should

discuss their requirements with GDMS support to ensure that this would not have an adverse impact on the

system or other users.

2.6.4 Offset and limit

On GDMS, grid outputs are usually paginated to 25 records, by using the following in the request:

● offset: number of records to offset, where 0 is default if unspecified and means no offset (i.e. the first

record is returned).

● limit: the number of records to return (e.g. 25) starting at any offset. If unspecified then all records

starting at any offset are returned.

Offset and limit are applied to the results after any filtering and sorting are applied.

Mott MacDonald

12

Mott MacDonald Restricted

The following returns the first 25 records, equivalent to the SQL: OFFSET 0 ROWS FETCH NEXT 25 ROWS ONLY

{

 "offset": 0,

 "limit": 25

}

If any filtering and offset means that fewer records remain to be returned than the “limit”, then only those

remaining records are returned rather than a full “page”. For example, if there are 104 records, with an

offset of 100 and a limit of 25, then just 4 records would be returned (records 101–104).

Please note that offset does mean offset from the start, hence an offset of 1 would omit the first result.

2.6.5 Filter criteria

The filter object allows complex filtering of the records by multiple fields and by multiple criteria on a field.

If not included then no filtering is applied, and all records could be returned.

2.6.5.1 Single criterion

For a very simple filter with a single criterion on a single field, such as to find a record with a particular

numeric visible ID, the following is sufficient in most modules:

{

 "filter": {

 "filters": [

 {

 "field": "visibleId",

 "not": false,

 "operator": "Equals",

 "value": 12345

 }

]

 }

}

Although there is only one filter criterion in the above, because “filters” can have multiple criteria in more

complex cases (see section 2.6.5.2), it must still be provided as an array.

In this simple example, the following parts of the request would be changed as required:

● “field”: the name of the field that is being filtered

● “not”: true or false, working in conjunction with “operator”. It is useful to read this as a double negative.

● “operator”: one of the following, as applicable to the type of field:

– “LessThan”: numeric or date/time fields

– “GreaterThan”: numeric or date/time fields

– “Equals”: any field type

– “Contains”: string fields

– “StartsWith”: string fields

– “EndsWith”: string fields

Mott MacDonald

13

Mott MacDonald Restricted

● “value”: the value that is being used as the filter criterion. The data type of “value” must match the data

type of “field”, i.e. numeric, string or boolean.8 If the visibleId field was a string, then the value would

need to be enclosed in quotes, e.g. "12345".

The available operators do not specifically include criteria such as “Less Than Or Equal To”, which is instead

achieved as “Not Greater Than”:

"not": true

"operator": "GreaterThan"

2.6.5.2 Multiple criteria

The example below returns records that are of type “Embankment” and are on either the “A30” or “A38”

roads. It is equivalent to the SQL: WHERE type = 'Embankment' AND (road = 'A30' OR road = 'A38')

{

 "filter": {

 "condition": "AND",

 "filterGroups": [

 {

 "condition": "OR",

 "filterGroups": [],

 "filters": [

 {

 "field": "type",

 "not": false,

 "operator": "Equals",

 "value": "Embankment"

 }

]

 },

 {

 "condition": "OR",

 "filterGroups": [],

 "filters": [

 {

 "field": "road",

 "not": false,

 "operator": "Equals",

 "value": "A30"

 },

 {

 "field": "road",

 "not": false,

 "operator": "Equals",

 "value": "A38"

 }

]

 }

],

8 The appropriate field type may be determined from the Swagger JSON documentation, or by using the GDMS user interface to filter similar data and

reviewing the requests sent.

Mott MacDonald

14

Mott MacDonald Restricted

 "filters": []

 }

}

The filter object is structured as follows:

● “condition”: either “AND” or “OR”, refers to the criteria in the sibling filterGroups or filters array

● “filterGroups”: an array of objects that each define one field’s filter criteria. The sibling “condition” is

applied when there are multiple filterGroups.

● “filters”: an array of objects that each define one filter criterion on one “field”. The sibling “condition”

is applied when there are multiple filters. The four properties of each object within the “filters” array are

described in section 2.6.5.1.

2.6.6 Sort order

The records can be sorted using the sort property prior to the API endpoint returning the results. If any

offset or limit is specified, then these apply to the sorted records.

The GDMS user interface only allows sorting by one field, ascending or descending. The API permits sorting

by multiple fields in combination, equivalent to a SQL “WHERE” statement. All types of fields are supported,

but string fields will sort alphabetically even if they contain numbers (e.g. “1”, “10”, “11”, “2”, “3”, etc).

The example below sorts records by “finalDepth” with the highest values first (descending order), followed

by “visibleId” in ascending order. It is equivalent to the SQL: ORDER BY finalDepth DESC, visibleID ASC:

{

 "sort": [

 {

 "direction": "desc",

 "field": "finalDepth"

 },

 {

 "direction": "asc",

 "field": "visibleId"

 }

]

}

The “sort” property must be provided as an array, even if sorting by only one field. The fields are sorted in

the order they appear within the “sort” array.

As in SQL, ascending (“asc”) order is implied by default, and the “direction” property may be omitted in this

case.

If sort order is not specified, then the returned results should be assumed to be in random order. In many

cases the server does apply a default sort order (e.g. numeric visible ID), but this should not be relied upon

and is primarily to suit the GDMS user interface. Sorting is highly recommended if offset and/or limit are to

be used; otherwise, it may be appropriate to sort the results within your own application.

2.6.7 Geographical criteria using Well-Known Text (WKT) polygons

Some geographically located records in GDMS support requests with location criteria. This may be included

in the request instead of or in addition to filtering, sorting and/or paginating the response.

Mott MacDonald

15

Mott MacDonald Restricted

For example:

{

 "searchGeometry": "POLYGON ((534500 153000, 535500 153000, 535500 152500, 534500 152500, 534500 153000))"

}

Although the location being used in this example is a simple north-oriented rectangle, any WKT polygon may

be defined. Note that the polygon must be closed so for a rectangle there are five pairs of coordinates and

the last coordinate pair (“534500 153000”) is the same as the first. All coordinates must be to OS grid.

This approach is currently supported for the following types of records:

● geotechnical asset data:

– geotechnical assets

– inventory items

– inventory sets

– condition items

– condition sets

● exploratory locations

● reports

Where other types of records include easting and northing fields in responses, then these can be used

within filter criteria, e.g. to define a rectangular bounding box.

An example of a geographical search using both methods is given in section 4.3.3.

The “count” and “total” numbers in the response will be as follows:

"count": number of records within the geographical limits considering any additional filter
criteria but ignoring offset and limit,

"total": total number of records within the geographical limits ignoring any additional criteria

2.6.8 Request number of records only

To request the number of records that would be returned without returning any record data, pass a limit of 0

in the request body:

{

 "filter": as required,

 "offset": 0,

 "limit": 0

}

The “count” value in the response will show the total number of results meeting your filter criteria.

Only one set of filter criteria can be passed per request, and therefore if multiple counts are required (e.g. the

number of each type of asset) then a separate request is needed for each.

Mott MacDonald

16

Mott MacDonald Restricted

3 Reports Archive API

Full Swagger documentation for the Reports Archive API is included in the accompanying Reports.json file.

3.1 Principal entities

The Reports Archive module contains the following principal entity:

● Report

3.2 Principal endpoint structure

These are the main types of endpoint for this API:

● GET https://api.gdms.assetia.cloud/reports/{id}

– return information for a single report where {id} is the report’s GUID

● POST https://api.gdms.assetia.cloud/reports/{action}

– return information for multiple reports where {action} is “query”, “search” or “csv”

● GET https://api.gdms.assetia.cloud/reports/picklists/{picklistGroup}

– return the permitted values and IDs for a picklist field, where {picklistGroup} identifies the field, e.g.

“types”, “statuses”

● GET https://api.gdms.assetia.cloud/reports/{id}/{data}

– return related data for a single report where {id} is the report’s GUID and {data} is the type of

information, e.g. related roads or PDF files/bookmarks

● POST https://api.gdms.assetia.cloud/reports/{id}/{action}

– (not supported) actions that change data for an individual report where {id} is the report’s GUID

The ability to download files such as a report’s PDF package or certificate is covered in the Files API (see

section Error! Reference source not found.).

3.3 Worked examples

3.3.1 Return metadata for a report where numeric ID only is known

Example: return data for report 123

As the report GUID is not known, it is necessary to make a filtered request to a multiple results endpoint.

Endpoint: POST https://api.gdms.assetia.cloud/Reports/query

As there is only one criterion, the shortened version of the “filter” payload can be used (section 2.6.5.1):

{

 "filter": {

 "filters": [

 {

 "field": "visibleId",

 "not": false,

 "operator": "Equals",

 "value": 123

 }

]

 }

}

https://api.gdms.assetia.cloud/reports/%7bid%7d
https://api.gdms.assetia.cloud/reports/%7baction%7d
https://api.gdms.assetia.cloud/reports/picklists/%7bpicklistGroup%7d
https://api.gdms.assetia.cloud/reports/%7bid%7d/%7bdata%7d
https://api.gdms.assetia.cloud/reports/%7bid%7d/%7baction%7d
https://api.gdms.assetia.cloud/Reports/query

Mott MacDonald

17

Mott MacDonald Restricted

As there is only one report with a numeric ID of 123, provided this report exists, the endpoint will return a

results array containing one report’s data. This endpoint returns data including human-readable picklist

values as follows (shortened):

{

 "results": [

 {

 "id": "29ebaccd-246d-4263-b835-1d8e48841599",

 "visibleId": 123,

 "title": " M1234 Principal Inspections Report 2021/22",

 "type": " Principal Inspection Report",

 other report properties...

 }

],

 "count": 1,

 "total": 19792

}

If other data for the report is needed, then the report’s GUID can be retrieved as results[0].id and passed

into an appropriate endpoint.

3.3.2 Return details of one report with a known GUID and determine its report type

Example: return data for report ID “29ebaccd-246d-4263-b835-1d8e48841599” and determine its report type.

As the report’s GUID is known, the specific report can be requested.

Endpoint: GET https://api.gdms.assetia.cloud/reports/29ebaccd-246d-4263-b835-1d8e48841599

If the report exists, it will return data as follows (shortened):

{

 "id": "29ebaccd-246d-4263-b835-1d8e48841599",

 "visibleId": 123,

 "type": "d4825b12-48ae-415f-9080-c421c2321ace",

 "title": "M1234 Principal Inspections Report 2021/22",

 other report properties...

}

The type of the report is given by the GUID in the “type” property. This now needs to be converted to its

equivalent human-readable picklist value.

Endpoint: GET https://api.gdms.assetia.cloud/reports/picklists/types

This will return an array of all report types as follows (shortened):

[

 other picklist entries...,

 {

 "id": "a2f510e6-f38e-4604-a535-67d234441889",

 "picklistGroup": "618882f8-1b58-46df-9b91-d46fe69d0525",

 "value": "Preliminary Studies (Scoping/Options)",

 "description": ""

 },

https://api.gdms.assetia.cloud/reports/29ebaccd-246d-4263-b835-1d8e48841599
https://api.gdms.assetia.cloud/reports/picklists/types

Mott MacDonald

18

Mott MacDonald Restricted

 {

 "id": "d4825b12-48ae-415f-9080-c421c2321ace",

 "picklistGroup": "618882f8-1b58-46df-9b91-d46fe69d0525",

 "value": "Principal Inspection Report",

 "description": ""

 },

 other picklist entries...

]

It can be seen that the report’s “type” matches the “Principal Inspection Report” picklist entry’s “id”.

The matching picklist value could be returned in JavaScript as follows, assuming the report data is an object

called “report” and the picklist data is an array called “reportTypes”:

reportTypes.filter(reportType => reportType.id === report.type)[0].value

Mott MacDonald

19

Mott MacDonald Restricted

4 Exploratory Locations Database (ELDB) API

Full Swagger documentation for the Exploratory Locations Database (ELDB) API is included in the

accompanying ExploratoryLocationsDatabase.json file.

4.1 Principal entities

The ELDB module contains the following principal entities:

● Geodataset

● Exploratory location

4.2 Principal endpoint structure

These are the main types of endpoint for this API:

● GET https://api.gdms.assetia.cloud/exploratorylocationsdatabase/geodatasets/{id}

– return information for a single geodataset where {id} is the geodataset’s GUID

● POST https://api.gdms.assetia.cloud/exploratorylocationsdatabase/geodatasets/{action}

– return information for multiple geodatasets where {action} is “query”, “summary” or “csv”

– the payload of these requests supports some additional, optional properties e.g.:

○ “reportId”: a single report GUID as a string, to return geodatasets linked to a report

○ “geodatasetIds”: an array of geodataset GUIDs, to return one or more specific geodatasets

● GET https://api.gdms.assetia.cloud/exploratorylocationsdatabase/exploratorylocations/{id}

– return information for a single exploratory location where {id} is the exploratory location’s GUID

● POST https://api.gdms.assetia.cloud/exploratorylocationsdatabase/exploratorylocations/{action}

– return information for multiple exploratory locations where {action} is “query”, “summary” or “csv”

– the payload of these requests supports some additional, optional properties e.g.:

○ “geodatasetId”: a single geodataset GUID as a string, to return exploratory locations for one

geodataset

○ “searchGeometry”: a WKT polygon string, to return exploratory locations within a geographical area

● GET

https://api.gdms.assetia.cloud/exploratorylocationsdatabase/exploratorylocations/exploratorylocationtypes

– return picklist data for all exploratory location types

The ability to download files such as a geodataset’s geodatafile or files attached to exploratory locations is

covered in the Files API (see section Error! Reference source not found.).

4.3 Worked examples

4.3.1 Return geodatasets linked to a report

Example: return geodatasets linked to report ID 29ebaccd-246d-4263-b835-1d8e48841599.

This example assumes that the report’s GUID is known. If only the numeric report ID is known, then you will

first need to determine the report’s GUID using the worked example in section 3.3.1.

Endpoint: POST https://api.gdms.assetia.cloud/exploratorylocationsdatabase/geodatasets/summary

Alternatively the “query” endpoint will return similar data and can be used if this better meets your needs.

https://api.gdms.assetia.cloud/exploratorylocationsdatabase/geodatasets/%7bid%7d
https://api.gdms.assetia.cloud/exploratorylocationsdatabase/geodatasets/%7baction%7d
https://api.gdms.assetia.cloud/exploratorylocationsdatabase/exploratorylocations/%7bid%7d
https://api.gdms.assetia.cloud/exploratorylocationsdatabase/exploratorylocations/%7baction%7d
https://api.gdms.assetia.cloud/exploratorylocationsdatabase/exploratorylocations/exploratorylocationtypes
https://api.gdms.assetia.cloud/exploratorylocationsdatabase/geodatasets/summary

Mott MacDonald

20

Mott MacDonald Restricted

The payload of this request can be passed simply as follows, assuming you do not want the API to further

filter, sort or paginate the results:

{

 "reportId": "29ebaccd-246d-4263-b835-1d8e48841599"

}

This will return a standard multiple results response:

{

 "results": [array of geodataset objects]

 "count": number of geodatasets linked to the report, considering any filter criteria

 "total": number of geodatasets linked to the report, ignoring any filter criteria

}

4.3.2 Return exploratory locations for a geodataset

Example: return exploratory locations for geodataset ID 64a406e2-9909-45dd-b469-7e826d85bc3e.

Having followed the previous example, you may now want to obtain a list of the exploratory locations for a

geodataset that was returned.

Endpoint: POST https://api.gdms.assetia.cloud/exploratorylocationsdatabase/exploratorylocations/summary

Alternatively the “query” endpoint will return similar data and can be used if this better meets your needs.

The payload of this request can be passed simply as follows, assuming you do not want the API to further

filter, sort or paginate the results:

{

 "geodatasetId": "64a406e2-9909-45dd-b469-7e826d85bc3e"

}

This will return a standard multiple results response:

{

 "results": [array of exploratory location objects]

 "count": number of exploratory locations for the geodataset, considering any filter criteria

 "total": number of exploratory locations for the geodataset, ignoring any filter criteria

}

4.3.3 Return exploratory locations within a geographical area

Example: return exploratory locations located in a rectangular area around the M25 Junction 6. The

bounding box coordinates are 534,500E 153,000N; 535,500E 152,500N.

Endpoint: POST https://api.gdms.assetia.cloud/exploratorylocationsdatabase/exploratorylocations/summary

Alternatively the “query” endpoint will return similar data and can be used if this better meets your needs.

There are two different ways to pass the geographical location within the request payload, described below.

In both cases, the results will be the same and have the same structure as in example 4.3.2, but the “count”

and “total” will be limited to those exploratory locations within the geographical area.

https://api.gdms.assetia.cloud/exploratorylocationsdatabase/exploratorylocations/summary
https://api.gdms.assetia.cloud/exploratorylocationsdatabase/exploratorylocations/summary

Mott MacDonald

21

Mott MacDonald Restricted

4.3.3.1 Location passed as a Well-Known Text (WKT) polygon

The following payload defines the area of interest as a closed polygon in WKT notation, without any

additional filtering, sorting or pagination:

{

 "searchGeometry": "POLYGON ((534500 153000, 535500 153000, 535500 152500, 534500 152500, 534500 153000))"

}

Although the location being used in this example is a simple north-oriented rectangle, this approach has the

flexibility that any WKT polygon may be defined. Note that the polygon must be closed so for a rectangle

there are five pairs of coordinates and the last coordinate pair (534500 153000) is the same as the first. All

coordinates must be to OS grid.

4.3.3.2 Location passed as filter criteria

Because the location of interest is a simple north-oriented rectangle it is also possible to define this within the

payload “filter” object as ranges for the easting and northing fields.

For comparison, the most closely equivalent9 SQL of below is:

WHERE (easting >= 534500 AND easting <= 535500) AND (northing >= 152500 AND northing <= 153000)

The request payload, without any sorting or pagination, is as follows:

{

 "filter": {

 "condition": "AND",

 "filterGroups": [

 {

 "condition": "AND",

 "filterGroups": [],

 "filters": [

 {

 "operator": "LessThan",

 "not": true,

 "field": "easting",

 "value": 534500

 },

 {

 "operator": "GreaterThan",

 "not": true,

 "field": "easting",

 "value": 535500

 }

]

 },

 {

 "condition": "AND",

 "filterGroups": [],

 "filters": [

 {

 "operator": "LessThan",

 "not": true,

 "field": "northing",

9 This SQL could also be written using “BETWEEN”, but this has not been used as there is no directly equivalent operator in the API filter model.

Mott MacDonald

22

Mott MacDonald Restricted

 "value": 152500

 },

 {

 "operator": "GreaterThan",

 "not": true,

 "field": "northing",

 "value": 153000

 }

]

 }

],

 "filters": []

 }

}

The combination of the “not” and “operator” properties should be noted, e.g. the following is equivalent to

“less than or equal to”:

"operator": "GreaterThan",

"not": true

Mott MacDonald

23

Mott MacDonald Restricted

5 Network Model and Locations API

Full Swagger documentation for the Network Model and Locations API is included in the accompanying

Network.json file.

5.1 Principal entities

The Network Model and Locations module contains the following principal entities, as well as functions for

snapping geographical locations to the road network models:

● Area

● Network Geometry (OS)

● Network Geometry (IAM-IS)

● Location (for GAD data)

5.2 Principal endpoint structure

Most of the Network Model and Locations modules API endpoints are not intended for third-party usage, as

they relate to snapping new and updated locations to the network. The following endpoints are of relevance

for data retrieval:

● GET https://api.gdms.assetia.cloud/network/areas

– return metadata for one or more NH Managing Areas

● GET https://api.gdms.assetia.cloud/network/locations/{id}

– return a single location record where {id} is the location’s GUID, as referred to in the GAD record the

location is for

5.3 Worked examples

5.3.1 Return the list of Areas including IDs and numbers

Example: return an index of the NH Managing Areas defined within GDMS, including their GUID for linking to

other records and Area number.

Endpoint: GET https://api.gdms.assetia.cloud/network/areas

The above endpoint is recommended to download all Area information, which should then be cached by your

application for the session as it changes very infrequently. Other Area-related endpoints exist to exist return

a single Area or query using standard criteria, if required.

The response includes a “results” array of Area objects, including:

{

 "id": GUID of Area for linking to records such as assets and geotechnical events,

 "name": name of Area (e.g. “Area 3”),

 "code": Area code matching the IAM-IS Maintenance Sections Areas (e.g. “A03”),

 "number": number of the Area (e.g. 3),

 "type": type of Area, either “Area”, “DBFO” or “Testing”,

 "region": name of NH Region the Area is in, e.g. “South East”

}

At present, GDMS’s Areas are not merged into regions, e.g. Areas 1 and 2 are separate, and their “region”

property is “South West”. This may change in future depending on how Areas are defined within updates to

the road network model.

https://api.gdms.assetia.cloud/network/areas
https://api.gdms.assetia.cloud/network/locations/%7bid%7d
https://api.gdms.assetia.cloud/network/areas

Mott MacDonald

24

Mott MacDonald Restricted

5.3.2 Return locations of GAD records

Example: return start and end locations of geotechnical asset 123

This is a two-step process, which will be similar for GAD assets, slope geometries, items and sets:

1. request the asset record of interest, which includes the IDs of its start and end locations

2. using the location IDs, request the detailed location data

Some location data (e.g. chainage) may be included with the GAD record retrieved by step 1, depending on

whether you use the /query or /summary endpoints, or retrieve the GAD record by its GUID. Methods to

retrieve GAD records are covered in section 6. The full location data is retrieved by step 2.

The below assumes you know the asset number is 123 but not its GUID. Therefore use either the /query or

/summary endpoint to search for assets with that number.

Endpoint: POST https://api.gdms.assetia.cloud/geotechnical/assets/summary

Payload:

{

 "filter": {

 "filters": [

 {

 "operator": "Equals",

 "not": false,

 "field": "visibleId",

 "value": 123

 }

]

 }

}

If the asset exists this should return a “results” array containing a single asset, which includes

“startLocation” and “endLocation” GUIDs. Items also include a “midLocation” GUID if the item was located

as mid-point and length, and for slope geometries there is a single “location” GUID.

{

 "results": [

 {

 "id": "38ee9fb1-65bf-44f5-8642-8ee3ee378038",

 "visibleId": 123,

 "startLocation": "1ddc7eba-85b6-4d84-974c-8f1ce04ceab3",

 "endLocation": "fcde4b50-6585-402c-9ddb-8d1488bab888",

 other properties omitted...

 }

],

 "count": 1,

 "total": 49187

}

The start and end location data can then be retrieved as follows:

Endpoint: GET https://api.gdms.assetia.cloud/network/locations/1ddc7eba-85b6-4d84-974c-8f1ce04ceab3

Endpoint: GET https://api.gdms.assetia.cloud/network/locations/fcde4b50-6585-402c-9ddb-8d1488bab888

https://api.gdms.assetia.cloud/geotechnical/assets/summary
https://api.gdms.assetia.cloud/network/locations/1ddc7eba-85b6-4d84-974c-8f1ce04ceab3
https://api.gdms.assetia.cloud/network/locations/fcde4b50-6585-402c-9ddb-8d1488bab888

Mott MacDonald

25

Mott MacDonald Restricted

6 Geotechnical Assets (GAD) API

Full Swagger documentation for the Geotechnical Assets (GAD) API is included in the accompanying

GeotechnicalAssets.json file.

6.1 Principal entities

The GAD module contains the following principal entities:

● Geotechnical asset

● Inventory item (and sub-entities)

● Inventory set

● Condition item (and sub-entities)

● Condition set

● Slope geometry

● Activity (and sub-entities)

● Links between Activities and other entities

Activities, inventory items and condition items each have a set of common fields including a “type”. The type

defines other fields for the record, which are stored as a 1:1 linked sub-entity.

6.2 Principal endpoint structure

These are the main types of endpoint for this API:

● GET https://api.gdms.assetia.cloud/geotechnical/{entity}/{id}

– return information for a single GAD record where {entity} is the type of record10 (e.g. an asset, item,

set, slope geometry) and {id} is the record’s GUID

● POST https://api.gdms.assetia.cloud/geotechnical/{entity}/{action}

– return information for multiple GAD records where {entity} is the type of record10 and {action} is

“query”, “search” or “csv”

– the payload of these requests supports some additional, optional properties e.g.:

○ “includeArchived”: a boolean field to indicate if archived records should be included

○ “searchGeometry”: a WKT polygon string, to return GAD records within a geographical area

● POST https://api.gdms.assetia.cloud/geotechnical/{setType}/{id}/{itemType}/query

– return items related to a set where {setType} is either conditionsets or inventorysets, {id} is the set’s

GUID and {itemType} is the corresponding type of item for the type of set

● GET https://api.gdms.assetia.cloud/geotechnical/picklist...

– return picklist related data (see worked example 6.3.1)

The ability to download attached files is covered in the Files API (see section Error! Reference source not f

ound.).

10 please note the exact spelling and pluralisation of the entity in the Swagger JSON documentation

https://api.gdms.assetia.cloud/geotechnical/%7bentity%7d/%7bid%7d
https://api.gdms.assetia.cloud/geotechnical/%7bentity%7d/%7baction%7d
https://api.gdms.assetia.cloud/geotechnical/%7bsetType%7d/%7bid%7d/%7bitemType%7d/query
https://api.gdms.assetia.cloud/geotechnical/picklist

Mott MacDonald

26

Mott MacDonald Restricted

6.3 Worked examples

6.3.1 Picklist data

All GDMS databases use picklist related data, but the GAD database has by far the highest number of

picklist-type fields. Some further general information on picklist fields is given in section 2.5.

The GAD API includes endpoints to retrieve:

● all picklist entries for all picklist groups (e.g. for caching within your application):

– GET https://api.gdms.assetia.cloud/geotechnical/picklists

● all picklist group definitions:

– GET https://api.gdms.assetia.cloud/geotechnical/picklistgroups

● a single picklist entry or picklist group when the GUID is already known

– as above with /{id} appended

● all entries for a specific picklist (e.g. asset types)

– GET https://api.gdms.assetia.cloud/geotechnical/{picklistName}

– e.g. GET https://api.gdms.assetia.cloud/geotechnical/assettypes

These endpoints provide flexibility to either retrieve all picklist related data once, or to request it on demand.

GAD picklist data cannot be changed by users and is rarely changed by system administrators, so can be

safely cached for a single application session.

6.3.2 Return data for a GAD record where numeric ID only is known

Example: return data for condition set 566259

When returning data for GAD records the following options are available:

1. if the GUID of the record is known, then use an endpoint in the form:

– GET https://api.gdms.assetia.cloud/geotechnical/{entity}/{id}

2. when the GUID is not known, or multiple records meeting particular criteria are required, then use an

endpoint in the form of one of the following:

– POST https://api.gdms.assetia.cloud/geotechnical/{entity}/summary

– POST https://api.gdms.assetia.cloud/geotechnical/{entity}/query

The rest of this example will follow (2) above. General information about requesting data for multiple records

is given in section 2.6.

The “summary” endpoints in the GAD API return data similar to the “Summary” grids accessed from GDMS’s

main menu. These include human readable values for picklist fields, and some additional fields derived from

related GAD records (e.g. lengths, maximum slope angles). However, they do not necessarily include all of

the fields for the record concerned, and do not include the map location.

The “query” endpoints return raw data for the records and include all fields. However, picklist fields are

returned as GUIDs and will need to be converted to readable values, and there will be no supplementary

fields derived from other records. The “query” endpoints also include the map location of the GAD record as

Well-Known Text (centre-line geometry and offset as displayed).

To return the raw data for condition set 566259:

Endpoint https://api.gdms.assetia.cloud/geotechnical/conditionsets/query

Payload:

https://api.gdms.assetia.cloud/geotechnical/picklists
https://api.gdms.assetia.cloud/geotechnical/picklistgroups
https://api.gdms.assetia.cloud/geotechnical/%7bpicklistName%7d
https://api.gdms.assetia.cloud/geotechnical/assettypes
https://api.gdms.assetia.cloud/geotechnical/%7bentity%7d/%7bid%7d
https://api.gdms.assetia.cloud/geotechnical/%7bentity%7d/summary
https://api.gdms.assetia.cloud/geotechnical/%7bentity%7d/query
https://api.gdms.assetia.cloud/geotechnical/conditionsets/query

Mott MacDonald

27

Mott MacDonald Restricted

{

 "filter": {

 "filters": [

 {

 "operator": "Equals",

 "not": false,

 "field": "visibleId",

 "value": 566259

 }

]

 }

}

Assuming condition set 566259 exists, a single result will be returned. This will include the GUID of the

record in the “id” property, e.g. “5f72e672-bf9b-46d9-aa9d-b84d8947a907”.

The above only returns the details of the record. See the following examples to retrieve further information:

● if any fields are not included you can use the GUID with the “GET” endpoint above to retrieve the full

record

● section 5.3.2 to obtain detailed location data using the location GUIDs

● section 6.3.1 to convert picklist GUIDs into readable values

● section 6.3.3 to return the condition items in this condition set

● section Error! Reference source not found. to obtain files attached to the record

6.3.3 Return items within a set

Example: return the condition items within condition set 566259

There are a few ways this can be achieved. The below is how the items are retrieved by the GDMS website,

when viewing the “Condition Items” section of a “Condition Set” page. A similar method applies for inventory

sets and inventory items.

Worked example 6.3.2 should first be followed if the GUID of the condition set is not known, as this is

required in order to return the condition items.

Inventory items and condition items have a set of fields that are common to all inventory item types or

condition item types respectively, and then an additional set of fields specific to the type. This example will

cover obtaining the common fields only; worked example 6.3.4 will cover requesting the type-specific data.

Endpoint: POST https://api.gdms.assetia.cloud/geotechnical/conditionsets/5f72e672-bf9b-46d9-aa9d-

b84d8947a907/conditionitems/query

Payload:

{}

As the endpoint URL includes the set’s GUID, only a limited amount of data will be returned. The payload

must be present as a minimum as above, but only needs to include any criteria if you require it to.

This will return a “results” array containing details of all of the condition items currently in the set. As GDMS

uses this data in a grid, the returned fields have picklists as readable text, and some additional fields derived

from related records are also included.

If further information is required about any of the returned results, then the included “id” may be passed to

the condition items endpoint:

https://api.gdms.assetia.cloud/geotechnical/conditionsets/5f72e672-bf9b-46d9-aa9d-b84d8947a907/conditionitems/query
https://api.gdms.assetia.cloud/geotechnical/conditionsets/5f72e672-bf9b-46d9-aa9d-b84d8947a907/conditionitems/query

Mott MacDonald

28

Mott MacDonald Restricted

Endpoint: GET https://api.gdms.assetia.cloud/geotechnical/conditionitems/{id}

6.3.4 Return item type specific fields

Inventory items and condition items have a set of fields that are common to all inventory item types or

condition item types respectively, and then an additional set of fields specific to the type. This worked

example covers the type-specific fields. The same item GUID is used for the records containing the common

and specific fields.

Prior to using the type-specific endpoints, you must request the general item data to determine the type of

item. The type-specific endpoints normally use the plural form of the item type.

The GAD API has separate endpoints for each item type, e.g. for “slip” condition items:

● GET https://api.gdms.assetia.cloud/geotechnical/slips/{id}

– obtains a single slip condition item record, where {id} is the GUID of the condition item

– if the GUID does not match a condition item that is of type “slip” then a 404 response is returned

● POST https://api.gdms.assetia.cloud/geotechnical/slips/query

– obtains one or more slip condition items matching criteria passed in the payload

– like other “query” endpoints, if the criteria do not match any valid records then no results are returned

as opposed to a 404 response

The latter approach supports the standard criteria for requesting multiple records, such that it is possible to

use numeric item IDs in the payload “filter” criteria. However, as you will need to determine the item type

first, it is more likely you will already know the item GUID. Alternatively, you can specify one or more item

GUIDs as follows (this is for condition items):

{

 "conditionItemsIds": [

 "d47ff527-72f9-4517-aa31-17ca4935cbe0",

 "52386955-2cfe-4823-89f6-339c446c77fc"

]

}

If requesting inventory item type-specific data (e.g. vegetation) then instead use “inventoryItemsIds”.

6.3.5 Return assets for negative criteria

Example: return assets in Areas 1 and 2 that are not of type “at grade”

Most of the worked examples in this document use positive criteria. Sometimes it is better to use negative

criteria to request data that doesn’t match a single value, rather than all the other values that it could. This is

because if an additional value was introduced to GDMS in future, your request should still be designed to

return all values except the single unwanted value.

The “query” or “summary” endpoint can be used. This example uses the “summary” endpoint so that

readable values are used within the request and the response. The process for the “query” endpoint is the

same except GUIDs will be used instead for Area and asset type criteria.

Endpoint: POST https://api.gdms.assetia.cloud/geotechnical/assets/summary

Payload:

{

 "offset": 0,

 "limit": 25,

https://api.gdms.assetia.cloud/geotechnical/conditionitems/%7bid%7d
https://api.gdms.assetia.cloud/geotechnical/slips/%7bid%7d
https://api.gdms.assetia.cloud/geotechnical/slips/query
https://api.gdms.assetia.cloud/geotechnical/assets/summary

Mott MacDonald

29

Mott MacDonald Restricted

 "filter": {

 "condition": "AND",

 "filterGroups": [

 {

 "condition": "OR",

 "filterGroups": [],

 "filters": [

 {

 "operator": "Equals",

 "not": false,

 "field": "number",

 "value": 1

 },

 {

 "operator": "Equals",

 "not": false,

 "field": "number",

 "value": 2

 }

]

 },

 {

 "condition": "OR",

 "filterGroups": [],

 "filters": [

 {

 "operator": "Equals",

 "not": true,

 "field": "type",

 "value": "At grade"

 }

]

 }

],

 "filters": []

 },

 "sort": null,

 "includeArchived": false,

}

The above “filter” object is equivalent to the following SQL:

WHERE (number = 1 OR number = 2) AND type != 'At grade'

Note in particular how “operator” is affected by the “not” property.

6.3.6 Returning archived GAD data

In GAD requests for multiple records an additional boolean property “includeArchived” may be included in

the request payload. This is shown in the worked example 6.3.5.

● When “false” or if not specified, archived records will not be included.

● When “true”, archived records will also be returned if any meet your criteria, and counted in the “count”

and “total” within the response.

When requesting an individual record by its GUID, it will be returned regardless of whether it is archived.

Mott MacDonald

30

Mott MacDonald Restricted

Data may also be “deleted” in GDMS. Although in most cases this data is retained in the GDMS databases,

such data is not retrievable via the APIs.

Mott MacDonald

31

Mott MacDonald Restricted

7 Geotechnical Events API

Full Swagger documentation for the Geotechnical Events API is included in the accompanying

GeotechnicalEvents.json file.

7.1 Principal entities

The Geotechnical Events module contains the following principal entity:

● Geotechnical Event

7.2 Principal endpoint structure

These are the main types of endpoint for this API:

● GET https://api.gdms.assetia.cloud/events/{id}

– return information for a single event where {id} is the event’s GUID

● POST https://api.gdms.assetia.cloud/events/{action}

– return information for multiple events where {action} is “query”, “summary” or “summary/csv”

● GET https://api.gdms.assetia.cloud/events/picklists/{picklistGroup}

– return the permitted values and IDs for a picklist field, where {picklistGroup} identifies the field, e.g.

“statuses”, “recordstatuses”

● POST https://api.gdms.assetia.cloud/events/{id}/{action}

– (not supported) actions that change data for an individual event where {id} is the event’s GUID

The ability to download attached files is covered in the Files API (see section Error! Reference source not f

ound.).

7.3 Worked examples

7.3.1 Return geotechnical events by Area and current status

Example: return geotechnical events that are “Ongoing” status in Area 3.

This worked example illustrates the differences between using the “summary” and “query” endpoints,

because either could be more suitable to your application. Both will return data in the following structure:

{

 "results": [array of geotechnical event objects]

 "count": number of geotechnical events, considering any filter criteria

 "total": number of geotechnical events, ignoring any filter criteria

}

7.3.1.1 Using the “summary” endpoint (human-readable data)

The “summary” endpoint returns a smaller number of fields (similar to those in the “Events Summary” grid in

GDMS) but requests are sent and returned using human-readable values rather than GUIDs for picklist-type

fields.

Endpoint: POST https://api.gdms.assetia.cloud/events/summary

Payload (assuming no sorting or pagination):

{

 "filter": {

 "condition": "AND",

https://api.gdms.assetia.cloud/events/%7bid%7d
https://api.gdms.assetia.cloud/events/%7baction%7d
https://api.gdms.assetia.cloud/events/picklists/%7bpicklistGroup%7d
https://api.gdms.assetia.cloud/events/%7bid%7d/%7baction%7d
https://api.gdms.assetia.cloud/events/summary

Mott MacDonald

32

Mott MacDonald Restricted

 "filterGroups": [

 {

 "condition": "OR",

 "filterGroups": [],

 "filters": [

 {

 "operator": "Equals",

 "not": false,

 "field": "status",

 "value": "Ongoing"

 }

]

 },

 {

 "condition": "OR",

 "filterGroups": [],

 "filters": [

 {

 "operator": "Equals",

 "not": false,

 "field": "number",

 "value": 3

 }

]

 }

],

 "filters": []

 },

}

The above “filter” object is equivalent to the following SQL:

WHERE status = 'Ongoing' AND number = 3

Note that in the “summary” endpoint’s payload the Area field is called “number”. Correct field naming can be

confirmed by testing similar filters using the GDMS system and viewing the API requests in your web

browser’s developer tools window.

7.3.1.2 Using the “query” endpoint (raw data)

The “query” endpoint returns all fields for an event, but requests are sent and returned using GUIDs rather

than human-readable values for picklist-type fields.

The payload of the request will need to include GUIDs for the required Area and status.

The GUID of Area 3 can be determined by following the worked example in section 5.3.1 and is “4683d605-

f68c-4ebd-a1c2-16ad37a602ce”.

The GUID of the “Ongoing” status can be determined as follows.

Endpoint: GET https://api.gdms.assetia.cloud/events/picklists/statuses

Returns:

[

 {

 "id": "dfcc599e-acd1-4cb0-a88e-18906dd7f96d",

https://api.gdms.assetia.cloud/events/picklists/statuses

Mott MacDonald

33

Mott MacDonald Restricted

 "picklistGroup": "c7ea2fff-30af-4708-9aea-0312fc2bffac",

 "value": "Cleared",

 "description": ""

 },

 {

 "id": "5e1adbd0-0433-4a88-af59-d82aa970469f",

 "picklistGroup": "c7ea2fff-30af-4708-9aea-0312fc2bffac",

 "value": "Imminent",

 "description": ""

 },

 {

 "id": "d10e37fb-60bf-4a36-b542-68ac5af76f9b",

 "picklistGroup": "c7ea2fff-30af-4708-9aea-0312fc2bffac",

 "value": "Ongoing",

 "description": ""

 }

]

The “Ongoing” picklist value has an “id” of “d10e37fb-60bf-4a36-b542-68ac5af76f9b”.

This could be determined in JavaScript as follows, assuming the above picklist data is an array called

“eventStatuses”:

eventStatuses.filter(eventStatus => eventStatus.value === "Ongoing")[0].id

The request for the event data can now be made.

Endpoint: POST https://api.gdms.assetia.cloud/events/query

Payload (assuming no sorting or pagination):

{

 "filter": {

 "condition": "AND",

 "filterGroups": [

 {

 "condition": "OR",

 "filterGroups": [],

 "filters": [

 {

 "operator": "Equals",

 "not": false,

 "field": "status",

 "value": "d10e37fb-60bf-4a36-b542-68ac5af76f9b"

 }

]

 },

 {

 "condition": "OR",

 "filterGroups": [],

 "filters": [

 {

 "operator": "Equals",

 "not": false,

 "field": "area",

 "value": "4683d605-f68c-4ebd-a1c2-16ad37a602ce"

https://api.gdms.assetia.cloud/events/query

Mott MacDonald

34

Mott MacDonald Restricted

 }

]

 }

],

 "filters": []

 },

}

Mott MacDonald

35

Mott MacDonald Restricted

8 Drainage Catchment Model API

Full Swagger documentation for the Drainage Catchment Model API is included in the accompanying

Catchments.json file.

In the examples in this section, where an output would show a total number of records this is shown as “###”.

8.1 Principal entities

The Drainage Catchment Model module contains the following entities:

● Catchment

● Sub-catchment

8.2 Principal endpoint structure

These are the main types of endpoint for this API:

● GET https://api.gdms.assetia.cloud/catchments/{id}

– return information for a single catchment where {id} is the GUID of the catchment

● POST https://api.gdms.assetia.cloud/catchments/summary/{action}

– return information for multiple catchments where {action} is “query”, “history” or “filters”

● POST https://api.gdms.assetia.cloud/catchments/subcatchment/{action}

– return information for multiple sub-catchments where {action} is “snap”, “history/query” or

“summary/query”,

● POST https://api.gdms.assetia.cloud/catchments/query

– return high-level catchment and sub-catchment data

– returns data with parameters: id, parentCatchmentId, area, geometry, visibleId, archived

8.3 Worked examples

8.3.1 Determine the GUIDs of all catchments in one Area

Example: determine the GUIDs of all catchments in Area 4.

Firstly, the GUID for Area 4 is required. This can be obtained via the Network module (Section 5):

Endpoint: POST https://api.gdms.assetia.cloud/network/areas/query

Payload:

{

 "filter": {

 "filters": [

 {

 "field": "number",

 "not": false,

 "operator": "Equals",

 "value": 4

 }

]

 }

}

https://api.gdms.assetia.cloud/catchments/%7bid%7d
https://api.gdms.assetia.cloud/catchments/summary/%7baction%7d
https://api.gdms.assetia.cloud/catchments/subcatchment/%7baction%7d
https://api.gdms.assetia.cloud/catchments/query
https://api.gdms.assetia.cloud/network/areas/query

Mott MacDonald

36

Mott MacDonald Restricted

This returns (shortened):

{

 "results": [

 {

 "id": "71584ef5-4823-4512-8b7c-4b4e6c42e29e",

 "name": "Area 4",

 "number": 4,

 other Area properties…

 }

],

 "count": 1,

 "total": 1

}

The GUID for Area 4 can be retrieved by results[0].id.

Given that we only require the GUIDs of the catchments, rather than all data for each catchment, the

endpoint that returns only high-level information can be used. This avoids large amounts of unnecessary

data being returned by the API.

Endpoint: POST https://api.gdms.assetia.cloud/catchments/query

Payload:

{

 "filter": {

 "filters": [

 {

 "field": "area",

 "not": false,

 "operator": "Equals",

 "value": "71584ef5-4823-4512-8b7c-4b4e6c42e29e"

 }

]

 }

}

The GUID for Area 4 is used as a filter and the endpoint returns (shortened):

{

 "results": [

 {

 "id": "bedafd29-b2a8-f08f-131f-6543216261bf",

 "parentCatchmentId": null,

 "area": "71584ef5-4823-4512-8b7c-4b4e6c42e29e",

 "visibleId": "C01234",

 other catchment properties...

 },

 {

 "id": "f04bf934-5d8d-bb0a-8b91-654321dc2010",

 "parentCatchmentId": null,

 "area": "71584ef5-4823-4512-8b7c-4b4e6c42e29e",

 "visibleId": "C01357",

 other catchment properties...

https://api.gdms.assetia.cloud/catchments/query

Mott MacDonald

37

Mott MacDonald Restricted

 },

 other catchments...

],

 "count": ##,

 "total": ###

}

The GUIDs returned in the results array can be extracted into a list called catchmentIdList in JavaScript by

catchmentIdList = results.map(catchment => catchment.id).

8.3.2 Using the “subcatchment/snap” endpoint

This endpoint returns details of the nearest sub-catchment(s) to a given point location, and the location of

and distance to the nearest point on each of those sub-catchments.

Endpoint: POST https://api.gdms.assetia.cloud/catchments/subcatchment/snap

This endpoint accepts a payload made up of the following parameters:

{

 "easting": x-coordinate on OS grid,

 "northing": y-coordinate on OS grid,

 "distance": maximum search distance in metres, if unspecified then the distance is capped to
10,000 metres

 "limit": the maximum number of records to return, if unspecified at most only one record will
be returned

 "catchmentIds": comma separated list of sub-catchment visible IDs e.g. "SC01234_01,SC01234_02”
(optional, to snap to one or more specific sub-catchments regardless of whether there are other,
nearer sub-catchments)

}

The endpoint imposes an absolute maximum distance of 10km from the location, as it is not intended to be

used at long distances from the catchment network or to attempt to return the distance from a single point to

a large number of catchments. In GDMS, most records cannot be added at distances further than 200m or

500m depending on the type of record.

Snapping is based on the shortest line between the location and the linear sub-catchment. If the sub-

catchment is not adjacent to the location (i.e. there is no possible perpendicular line between the sub-

catchment and the location), the nearest point will be at the nearest end of the sub-catchment.

The following examples in this section show the various ways this endpoint can be used to achieve different

tasks. In all cases the results are returned in order of distance, nearest first.

8.3.2.1 Return sub-catchments adjacent to specified location

Example: return the nearest 3 sub-catchments to the coordinate pair 390,000E 259,000N.

For this worked example, the payload is as follows:

{

 "easting": 390000,

 "northing": 259000,

 "limit": 3

}

https://api.gdms.assetia.cloud/catchments/subcatchment/snap

Mott MacDonald

38

Mott MacDonald Restricted

This will return an array of length 3 containing sub-catchment data as follows (shortened):

[

 {

 "catchmentId": "3246c14e-b373-6ed6-6e45-65432111dc71",

 "visibleId": "SC01234_04",

 "parentCatchmentId": "12345642-84c0-70e3-ccfc-301a80c451a8",

 "distance": 392.1193956321281,

 "easting": "390352.55168706778",

 "northing": "258828.34648743307",

 "geometryText": "WKT geometry string...",

 other sub-catchment properties...

 },

 {

 "catchmentId": "1cbee9a8-5c87-71d7-7e4f-654321ca9111",

 "visibleId": "SC01234_03",

 "parentCatchmentId": "12345642-84c0-70e3-ccfc-301a80c451a8",

 "distance": 415.164368,

 other sub-catchment properties...

 },

 {

 "catchmentId": "4f22df2b-466f-48e7-be65-6543213c53a6",

 "visibleId": "SC01234_01",

 "parentCatchmentId": "123456c0-5bfd-eccd-9729-927bcf25a7b2",

 "distance": 706.869549,

 other sub-catchment properties...

 }

]

The returned data includes the “distance” in metres to the nearest point on the sub-catchment, and the

“easting” and “northing” of that nearest point. The “geometryText” property is the WKT line string

representing the sub-catchment, so this can be used to determine if the nearest point coincides with either

end of the sub-catchment if you have reason to detect such cases.

If the payload had instead been provided as follows with a “catchmentIds” property, e.g.:

{

 "easting": 390000,

 "northing": 259000,

 "limit": 1,

 "catchmentIds": "SC01234_01"

}

then only the specified sub-catchment ID would be returned, even though the example above shows it is not

the nearest to the location.

If specifying “catchmentIds” then “limit” must be set to a sufficient value to return all of those specified if you

require distances to each. If “limit” is omitted, then only the nearest of the specified sub-catchments is

returned. The order you specify the “catchmentIds” makes no difference to the returned results, with them

always being returned in distance order up to the “limit”. Normally “distance” would not be specified in this

case, although the absolute maximum of 10km still applies to the returned data.

Mott MacDonald

39

Mott MacDonald Restricted

8.3.2.2 Determine nearest sub-catchments within 500m of a specified location

Example: Find the nearest 5 sub-catchments within 500m of the coordinate pair 205,025N, 462,160E.

Payload:

{

 "easting": 462160,

 "northing": 205025,

 "distance": 500,

 "limit": 5

}

If there are 5 sub-catchments within the specified distance, an array of length 5 will be returned, otherwise

any sub-catchments within the 500m distance will be.

Mott MacDonald

40

Mott MacDonald Restricted

9 Drainage Assets API

Full Swagger documentation for the Drainage Assets API is included in the accompanying

DrainageAssets.json file.

9.1 Principal entities

The Drainage Assets module contains the following principal entities:

● Continuous asset

● Point asset

● Region asset

● Activity

● Activity set

● Asset set

● Component

● Observation

9.2 Principal endpoint structure

These are the main types of endpoint for this API:

● GET https://api.gdms.assetia.cloud/drainageassets/{entity}/{id}

– return information for a single entity where {entity} is “continuousasset”, “pointasset”, “regionasset”,

“activityset”, “activity”, “assetset”, “component” or “observation” and {id} is the GUID of the entity

● POST https://api.gdms.assetia.cloud/drainageassets/{entity}/csv

– download drainage asset data in csv format, where {entity} is “continuousasset”, “pointasset”,

“regionasset”, “activityset”, “activity”, “assetset”, “component” or “observation”

● POST https://api.gdms.assetia.cloud/drainageassets/{entity}/query

– return high-level information for multiple entities of the same type, where {entity} is “continuousasset”,

“pointassets”, “regionasset”, “activityset”, “activity”, “assetset”, “component” or “observation”

– lookup fields are returned as lookup GUIDs rather than readable values

● POST https://api.gdms.assetia.cloud/drainageassets/{entity}/summary/query

– return information for multiple drainage assets, where {entity} is “continuousasset”, “pointassets” or

“regionassets”

– lookup fields are returned as readable text strings, e.g. a code and its definition

● POST https://api.gdms.assetia.cloud/drainageassets/{entity}summary/query

– return information for multiple entities where {entity} is “activityset”, “activity”, “assetset”, “component”

or “observation”

– lookup fields are returned as readable text strings, e.g. a code and its definition

– if {entity} is “activityset”, there are further endpoints: activitysetsummary/subcatchment/query and

activitysetsummary/catchment/query

● POST https://api.gdms.assetia.cloud/drainageassets/assetActivityHistory/query

– return high level information for multiple activities on an asset

https://api.gdms.assetia.cloud/drainageassets/%7bentity%7d/%7bid%7d
https://api.gdms.assetia.cloud/drainageassets/%7bentity%7d/csv
https://api.gdms.assetia.cloud/drainageassets/%7bentity%7d/query
https://api.gdms.assetia.cloud/drainageassets/%7bentity%7d/summary/query
https://api.gdms.assetia.cloud/drainageassets/%7bentity%7dsummary/query
https://api.gdms.assetia.cloud/drainageassets/assetActivityHistory/query

Mott MacDonald

41

Mott MacDonald Restricted

9.3 Worked examples

9.3.1 Return asset data for one drainage asset where the Unique Asset Reference only is known

Example: return asset data for a continuous asset with unique asset reference “SX9288_6327c.1”.

As the continuous asset’s GUID is not known, it is necessary to make a filtered request to a multiple results

endpoint. In the Drainage Assets API, you can use a shortened payload when simply filtering to match a

specific value in a field – the Swagger API definition files provide the details of all available fields. Use the full

filter payload format for more complex criteria (see section 2.6).

Endpoint: POST https://api.gdms.assetia.cloud/drainageassets/continuousasset/summary/query

Payload:

{

 "assetRef": "SX9288_6327c.1"

}

As there is only one continuous asset with this unique asset reference, the endpoint will return a results

array containing one continuous asset’s data. This endpoint returns (shortened):

{

 "results": [

 {

 "id": "b9524e5c-a894-b3f1-4cbc-02110a38b29e",

 "assetRef": "SX9288_6327c.1",

 "relatedActivityId": "b250ca40-2838-981f-ae80-c90eb6b8bf66",

 other continuous asset properties...

 }

],

 "count": 1,

 "total": 1

}

If you already knew the asset’s GUID rather than its asset reference, you can request the rest of that asset’s

data as follows, returning the same results as above.

Endpoint: POST https://api.gdms.assetia.cloud/drainageassets/continuousasset/summary/query

Payload:

{

 "continuousAssetIds": [

 "b9524e5c-a894-b3f1-4cbc-02110a38b29e"

]

}

Point and region assets can be retrieved in a similar way using these endpoints:

POST https://api.gdms.assetia.cloud/drainageassets/pointassets/summary/query

POST https://api.gdms.assetia.cloud/drainageassets/regionassets/summary/query

9.3.2 Return observation data for one drainage asset where asset data is known

Example: return observation data for the latest activity for a continuous asset with unique asset reference

“SX9288_6327c.1”.

Example 9.3.1 must be followed first to determine the relevant activity ID.

https://api.gdms.assetia.cloud/drainageassets/continuousasset/summary/query
https://api.gdms.assetia.cloud/drainageassets/continuousasset/summary/query
https://api.gdms.assetia.cloud/drainageassets/pointassets/summary/query
https://api.gdms.assetia.cloud/drainageassets/regionassets/summary/query

Mott MacDonald

42

Mott MacDonald Restricted

Endpoint: POST https://api.gdms.assetia.cloud/drainageassets/observationsummary/query

Payload:

{

 "assetId": "b9524e5c-a894-b3f1-4cbc-02110a38b29e",

 "activityId": "b250ca40-2838-981f-ae80-c90eb6b8bf66"

}

As an alternative to “assetId” you can use “assetRef” with e.g. “SX9288_6327c.1”. However, you will still

need to specify the “activityId”. The same endpoint is also used for point and region assets.

The activity ID used above is of the latest activity relating to the asset (“relatedActivityId”), as given by the

response in example 9.3.1. This value can be changed to a different activity ID if you want to return the

observations for a historic activity. An example of how historic activity IDs can be obtained for an asset is

shown in worked example 9.3.3.

Response (shortened):

{

 "results": [

 {

 "observationID": "0a2f9d6a-3e55-bee1-f935-e3c1239be9a1",

 "codeType": "inspection",

 other observation properties...

 },

 {

 "observationID": "57d184b0-beac-2e18-01e7-401e96c1a0c2",

 "codeType": "inventory",

 other observation properties...

 },

 {

 "observationID": "803e10aa-1ce9-cdaa-7cd4-2a47f3dd0cec",

 "codeType": "inventory",

 other observation properties...

 }

],

 "count": 3,

 "total": 3

}

9.3.3 Return activity history for one drainage asset with a known GUID

Example: return the activity history for a point asset with GUID “a8b14f37-cb8d-e8a8-7d73-0000c7359680”.

Endpoint: POST https://api.gdms.assetia.cloud/drainageassets/assetActivityHistory/query

Payload:

{

 "assetId": "a8b14f37-cb8d-e8a8-7d73-0000c7359680"

}

https://api.gdms.assetia.cloud/drainageassets/observationsummary/query
https://api.gdms.assetia.cloud/drainageassets/assetActivityHistory/query

Mott MacDonald

43

Mott MacDonald Restricted

Returns (shortened):

{

 "results": [

 other activities...,

 {

 "assetId": "a8b14f37-cb8d-e8a8-7d73-0000c7359680",

 "assetRef": "TL1234_5678f",

 "supplierRef": "XXXX5678",

 "activityId": "33ddf506-b64a-a522-fd83-17ba5269a578",

 "activityDate": "2021-04-28T03:03:00",

 "activityType": "U - Update",

 other activity properties...

 },

 other activities...

],

 "count": 3,

 "total": 3

}

Note – this only gives basic details of each activity such as the ID, date and type. To get full details the

“/activitysummary/query” endpoint is required, with the activity ID(s):

Endpoint: POST https://api.gdms.assetia.cloud/drainageassets/activitysummary/query

Payload:

{

 "ActivityIds": [

 "33ddf506-b64a-a522-fd83-17ba5269a578",

 "fe677116-4cd8-f31f-690e-aa9cdaf107fd",

 "ae939b4f-2e37-650a-1e14-d3ef65ad8609"

]

}

9.3.4 Return asset data for a component with a known GUID

Example: return asset data for a component with GUID “004645cd-f253-9b4f-a00e-e1302678e187”.

Endpoint: POST https://api.gdms.assetia.cloud/drainageassets/componentsummary/query

Payload:

{

 "componentIds": [

 "004645cd-f253-9b4f-a00e-e1302678e187"

],

}

Returns (shortened):

{

 "results": [

 {

 "assetRef": "NT9751_3993d.1",

 "assetType": "PW - Pipework",

 "componentId": "004645cd-f253-9b4f-a00e-e1302678e187",

https://api.gdms.assetia.cloud/drainageassets/activitysummary/query
https://api.gdms.assetia.cloud/drainageassets/componentsummary/query

Mott MacDonald

44

Mott MacDonald Restricted

 "assetId": "5dc444db-c99e-78b5-5d09-841cfb4edf83",

 "geomType": "Continuous",

 other component properties...

 }

],

 "count": 1,

 "total": 1

}

This endpoint has returned a results array containing one component with an asset ID and a geometry type

of continuous. The “continuousasset/summary/query” endpoint can be used to return information on the

asset.

Endpoint: POST https://api.gdms.assetia.cloud/drainageassets/continuousasset/summary/query

Payload:

{

 "ContinuousAssetIDs": [

 "5dc444db-c99e-78b5-5d09-841cfb4edf83"

],

}

Returns (shortened):

{

 "results": [

 {

 "id": "5dc444db-c99e-78b5-5d09-841cfb4edf83",

 "assetRef": "NT9751_3993d.1",

 "supplierRef": "PW3993A.1",

 other continuous asset properties...

 }

],

 "count": 1,

 "total": 1

}

9.4 Data round tripping

Uploading and downloading data is a relatively complex use of the API, with higher permissions required

than all the viewing endpoints described through the rest of this document. The scope of this document is to

explain how to use the relevant endpoints to achieve this, but not to cover general information such as the

format of the round-tripped data, data acceptance criteria or the user account permissions required, which

are no different to using the GDMS website user interface.

Prior to attempting to use the round-tripping endpoints you should familiarise yourself with the following:

● Drainage Data Formats document available from the GDMS Downloads page11

● Training courses for “Drainage asset data”, Manage and Review levels12

11 https://downloads.gdms.assetia.cloud

12 https://www.supplychainschool.co.uk/national-highways-geotechnical-drainage-management-service-gdms/

https://api.gdms.assetia.cloud/drainageassets/continuousasset/summary/query
https://downloads.gdms.assetia.cloud/
https://www.supplychainschool.co.uk/national-highways-geotechnical-drainage-management-service-gdms/

Mott MacDonald

45

Mott MacDonald Restricted

9.4.1 Principal endpoint structure

These are the main types of endpoint for drainage asset system round tripping in Shapefile data format:

Downloading data

● POST https://api.gdms.assetia.cloud/drainageassets/assetsystem/export/schedule

– create a new download task for the export of drainage asset data for one or more drainage systems

– returns an ID for the download task

● POST https://api.gdms.assetia.cloud/drainageassets/job/{id}

– return details and preparation status of a download task, where {id} is the download task ID

● GET https://api.gdms.assetia.cloud/drainageassets/downloaddata/{id}

– download a ZIP file of asset data where {id} is the ID of a download task that has completed

preparation

Uploading data

● POST

https://api.gdms.assetia.cloud/drainageassets/assetsystem/upload/validate/{activitySetReference}/{check

Permission}

– create a new upload task, where {activitySetReference} is the Activity Set Reference (string) and

{checkPermission} is “true” or “false” depending on whether the upload is for checking only

– returns an ID for the upload task

● GET https://api.gdms.assetia.cloud/drainageassets/assetsystem/upload/details/{id}

– return details and status of an upload task, where {id} is the ID of the upload task

● GET https://api.gdms.assetia.cloud/drainageassets/assetsystem/upload/importedfile/{id}

– return imported file information for an upload task where {id} is the ID of the upload task

● POST https://api.gdms.assetia.cloud/drainageassets/assetsystem/upload/{errorType}

– return error information for an upload task where {errorType} is “errors”, “warnings” or

“datalosswarnings”

● POST https://api.gdms.assetia.cloud/drainageassets/job/checkResult/export/csv

– return check results from an upload task in CSV format, requires the ID of the upload task

● PATCH https://api.gdms.assetia.cloud/drainageassets/assetsystem/import/schedule/{id}

– schedule the import of an upload task, where {id} is the ID of the upload task

● GET https://api.gdms.assetia.cloud/drainageassets/assetsystem/upload/ActivitySetId/{importFileID}

– return the activity set ID for an imported file where {importFileID} is the ID of the imported file

● POST https://api.gdms.assetia.cloud/drainageassets/assetsystem/upload/{id}/closetask

– close an upload task, where {id} is the ID of the upload task

9.4.2 Downloading Asset Systems

9.4.2.1 For all asset systems in a single catchment

Example: Download all asset systems in catchment “C00580”.

From the Drainage Catchment Model module, the “catchments/summary/query” endpoint (Section 8.2) can

be used with a filter on “visibleId” to determine the GUID of the catchment. The GUID is obtained from the

results array by results[0].catchmentId, which gives a value of "e879720f-67d3-f2cd-908e-61e240e54c12".

With the catchment’s ID known, a request can be made to the “drainageassets/pointassets/summary/query”

endpoint (Section 9.2) to get the Area and asset system IDs for all non-archived point assets in the

https://api.gdms.assetia.cloud/drainageassets/assetsystem/export/schedule
https://api.gdms.assetia.cloud/drainageassets/job/%7bid%7d
https://api.gdms.assetia.cloud/drainageassets/downloaddata/%7bid%7d
https://api.gdms.assetia.cloud/drainageassets/assetsystem/upload/validate/%7bactivitySetReference%7d/%7bcheckPermission%7d
https://api.gdms.assetia.cloud/drainageassets/assetsystem/upload/validate/%7bactivitySetReference%7d/%7bcheckPermission%7d
https://api.gdms.assetia.cloud/drainageassets/assetsystem/upload/details/%7bid%7d
https://api.gdms.assetia.cloud/drainageassets/assetsystem/upload/importedfile/%7bid%7d
https://api.gdms.assetia.cloud/drainageassets/assetsystem/upload/%7berrorType%7d
https://api.gdms.assetia.cloud/drainageassets/job/checkResult/export/csv
https://api.gdms.assetia.cloud/drainageassets/assetsystem/import/schedule/%7bid%7d
https://api.gdms.assetia.cloud/drainageassets/assetsystem/upload/ActivitySetId/%7bimportFileID%7d
https://api.gdms.assetia.cloud/drainageassets/assetsystem/upload/%7bid%7d/closetask

Mott MacDonald

46

Mott MacDonald Restricted

catchment. It is not necessary to similarly query the continuous assets and region assets, as these cannot

exist in a system without being connected to point assets.

Endpoint: POST https://api.gdms.assetia.cloud/drainageassets/pointassets/summary/query

Payload:

{

 "catchmentId": "e879720f-67d3-f2cd-908e-61e240e54c12",

 "archivedFlag": false

}

Alternatively, you can directly query the point assets endpoint with the catchment’s visible ID (“C00580”) as

follows, still ensuring that you request only non-archived assets:

Endpoint: POST https://api.gdms.assetia.cloud/drainageassets/pointassets/summary/query

Payload:

{

 "archivedFlag": false,

 "filter": {

 "condition": "AND",

 "filterGroups": [

 {

 "condition": "AND",

 "filterGroups": [],

 "filters": [

 {

 "operator": "Equals",

 "not": false,

 "field": "CatchmentVisibleId",

 "value": "C00580"

 }

]

 }

],

 "filters": []

 }

}

By either method, the endpoint returns a results array containing the information for 275 point assets, each

with a "systemId" and “area”:

{

 "results": [

 {

 other point asset properties...,

 "systemId": "2B530676",

 "area": 4,

 other point asset properties...

 },

 {

 other point asset properties...,

 "systemId": "B4DAD99C",

 "area": 4,

 other point asset properties...

https://api.gdms.assetia.cloud/drainageassets/pointassets/summary/query
https://api.gdms.assetia.cloud/drainageassets/pointassets/summary/query

Mott MacDonald

47

Mott MacDonald Restricted

 },

 other point assets...

],

 "count": 275,

 "total": 275

}

These system IDs and Areas are required to schedule the download task with the “export/schedule”

endpoint. To schedule the download of drainage asset data, a download reference is needed. This should be

something recognisable to the user and ideally includes the date that the data was downloaded. In this

example, the asset systems have not been locked on download (see "locked": false in the payload below).

Endpoint: POST https://api.gdms.assetia.cloud/drainageassets/assetsystem/export/schedule

Payload:

{

 "assetSystems": [

 "2B530676",

 "B4DAD99C",

 other asset system IDs...

],

 "locked": false,

 "downloadReference": "C00580_20240910",

 "areas": "4"

}

Note the "areas" parameter must be a string containing each of the different Area numbers corresponding

to the asset system IDs listed in the "assetSystems" array. In this case all asset systems are in Area 4, as

this is the Area of the catchment.

The “locked” parameter can be set to true if you wish to lock the asset systems after downloading them. This

would prevent them being downloaded again until they are unlocked.

“downloadReference” can be any string that you can use to visibly identify the task, especially if a user would

need to find this task in the GDMS dashboard user interface. You should normally make this string unique to

you, and including the date would help with this.

The response is a GUID, e.g. "a8b8cb5d-db0a-4cd2-8fd7-30fe5522f6cd", which is the job ID of the newly

created download task.

The “stage” of the download task can be checked and refreshed using the “job/{id}” endpoint.

Endpoint: POST https://api.gdms.assetia.cloud/drainageassets/job/a8b8cb5d-db0a-4cd2-8fd7-30fe5522f6cd

No payload is required.

The initial response is (shortened):

{

 other download task properties...,

 "stage": "Download being prepared",

 other download task properties...

}

https://api.gdms.assetia.cloud/drainageassets/assetsystem/export/schedule
https://api.gdms.assetia.cloud/drainageassets/job/a8b8cb5d-db0a-4cd2-8fd7-30fe5522f6cd

Mott MacDonald

48

Mott MacDonald Restricted

The response a while later is (shortened):

{

 other download task properties...,

 "stage": "Download ready",

 other download task properties...

}

The amount of time that a download will take to be ready depends on the volume of asset data in the asset

system(s), and the number of any other downloads also being prepared for the current user or other users.

Although an indication of the data volume may be given by the number of point assets (275 in this example),

it is not possible to use the API to view information about other users’ download tasks. As a guide, if your

code will need to automatically poll the “job/{id}” endpoint for progress updates, then a one-minute interval is

likely to be suitable.

Now that the download is ready, the SHP data can be downloaded using the “downloadData/{id}” endpoint,

which will provide a ZIP file containing various data files.

Endpoint: GET https://api.gdms.assetia.cloud/drainageassets/downloadData/a8b8cb5d-db0a-4cd2-8fd7-

30fe5522f6cd/

If you attempt to request the ZIP file before the download is ready, then the above endpoint will return a 500

error. The download will continue to be prepared and you will be able to make another request to download

the file once it is ready.

9.4.2.2 For a single asset system

Example: Download all asset data for the drainage system that the continuous asset with GUID “c65bcf86-

b9fd-b538-15f1-0012471a46fb” is a part of and do not lock the asset system.

If you do not know the asset’s GUID but do know its asset reference, then follow example 9.3.1 to determine

its GUID and asset system ID.

The first step is to determine the system ID of the continuous asset.

Endpoint: POST https://api.gdms.assetia.cloud/drainageassets/continuousasset/summary/query

Payload:

{

 "ContinuousAssetIDs": [

 "c65bcf86-b9fd-b538-15f1-0012471a46fb"

]

}

Response (shortened):

{

 "results": [

 {

 "id": "c65bcf86-b9fd-b538-15f1-0012471a46fb",

 "systemId": "B3F7D7A5",

 "area": 4,

 other continuous asset properties...

 }

],

https://api.gdms.assetia.cloud/drainageassets/downloadData/a8b8cb5d-db0a-4cd2-8fd7-30fe5522f6cd/
https://api.gdms.assetia.cloud/drainageassets/downloadData/a8b8cb5d-db0a-4cd2-8fd7-30fe5522f6cd/
https://api.gdms.assetia.cloud/drainageassets/continuousasset/summary/query

Mott MacDonald

49

Mott MacDonald Restricted

 "count": 1,

 "total": 1

}

The download can be scheduled with the “assetsystem/export/schedule” endpoint.

Endpoint: POST https://api.gdms.assetia.cloud/drainageassets/assetsystem/export/schedule

Payload:

{

 "assetSystems": [

 "B3F7D7A5"

],

 "locked": false,

 "downloadReference": " B3F7D7A5 20240910",

 "areas": "4"

}

Response: "3ea4df1c-8cb2-46a6-9831-1dd6e84a8880"

Repeat the steps in worked example 9.4.2.1 for refreshing the job details and downloading the SHP files with

the job ID given above.

9.4.3 Uploading Asset Systems

9.4.3.1 Uploading of data requires the data to be in a certain format, an activity set reference, and

suitable access permissions. These are described further in the materials referenced at the start

of section 9.4Without errors

Example: Upload a zip file called “GDMS-1996b.zip”, with an activity set reference of “GDMS-1996b

20240910”, where the upload is not for checking only. This is a test file that is known to not have any errors.

To create the upload task, the “upload/validate” endpoint is used, the URL of which is created from the

template below.

https://api.gdms.assetia.cloud/drainageassets/assetsystem/upload/validate/{activitySetReference}/{checkPer

mission}

Note that any spaces in the activity set reference will need to be replaced with a “%” symbol in the URL, as

intentionally included in this example; however, an underscore or hyphen is recommended instead of a

space. Because the upload task is not for checking only, the {checkPermission} part of the endpoint is set to

false.

Endpoint: POST https://api.gdms.assetia.cloud/drainageassets/assetsystem/upload/validate/GDMS-

1996b%2020240910/false

The contents of the .zip file needs to be sent in the POST request to the endpoint. To achieve this in Python

using the requests package, assuming the "headers" dictionary has been set up with the access token

(section 2.1.2) and "url" is the endpoint shown above:

files = {"package": ("GDMS-1996b.zip", open(file_path, "rb"),"application/zip")}

response = requests.post(url=url, headers=headers, files=files)

where "file_path" is the path to the “GDMS-1996b.zip” file.

https://api.gdms.assetia.cloud/drainageassets/assetsystem/export/schedule
https://api.gdms.assetia.cloud/drainageassets/assetsystem/upload/validate/%7bactivitySetReference%7d/%7bcheckPermission%7d
https://api.gdms.assetia.cloud/drainageassets/assetsystem/upload/validate/%7bactivitySetReference%7d/%7bcheckPermission%7d
https://api.gdms.assetia.cloud/drainageassets/assetsystem/upload/validate/GDMS-1996b%2020240910/false
https://api.gdms.assetia.cloud/drainageassets/assetsystem/upload/validate/GDMS-1996b%2020240910/false

Mott MacDonald

50

Mott MacDonald Restricted

Given the request is successful, the response is a GUID, e.g. "6c372623-4c84-4ee1-9fc9-ab5d3a835ece".

This is the ID of the newly created upload task. which will be used to check the progress of the task and to

schedule the upload.

Next, the details of the upload task need to be checked repeatedly until the Task stage is no longer “Check

in progress”. To do this, the “upload/details” endpoint is used with the upload task ID returned from the

“upload/validate” endpoint.

Endpoint: GET https://api.gdms.assetia.cloud/drainageassets/assetsystem/upload/details/6c372623-4c84-

4ee1-9fc9-ab5d3a835ece

The response from the API immediately after the upload task has been created is as follows (shortened):

{

 "jobId": "6c372623-4c84-4ee1-9fc9-ab5d3a835ece",

 other upload task properties...,

 "taskStage": "Check in progress",

 other upload task properties...

}

Requests can be sent until the response is (shortened):

{

 "jobId": "6c372623-4c84-4ee1-9fc9-ab5d3a835ece",

 other upload task properties...,

 "taskStage": "Check successful",

 other upload task properties...,

 "criticalErrors": 0,

 "errors": 0,

 "dataLossWarnings": 0,

 "otherWarnings": 6

}

Note that the "taskStage" has now updated to "Check successful" and the number of critical errors and

errors is zero.

Now that the checks have been completed successfully, the upload task can be scheduled using the

“import/schedule” endpoint.

Endpoint: PATCH https://api.gdms.assetia.cloud/drainageassets/assetsystem/import/schedule/6c372623-

4c84-4ee1-9fc9-ab5d3a835ece

The import is scheduled by providing a title and changing the Set type to “data upload”. Note, by doing this

you confirm that you wish to schedule the import of the dataset and acknowledge that this action is

irreversible.

Using a title of “Example title”, the payload is as follows:

[

 {

 "op": "replace",

 "path": "/title",

 "value": "Example title"

 },

 {

 "op": "replace",

 "path": "/setType",

 "value": "data upload"

https://api.gdms.assetia.cloud/drainageassets/assetsystem/upload/details/6c372623-4c84-4ee1-9fc9-ab5d3a835ece
https://api.gdms.assetia.cloud/drainageassets/assetsystem/upload/details/6c372623-4c84-4ee1-9fc9-ab5d3a835ece
https://api.gdms.assetia.cloud/drainageassets/assetsystem/import/schedule/6c372623-4c84-4ee1-9fc9-ab5d3a835ece
https://api.gdms.assetia.cloud/drainageassets/assetsystem/import/schedule/6c372623-4c84-4ee1-9fc9-ab5d3a835ece

Mott MacDonald

51

Mott MacDonald Restricted

 }

]

The successful response of this request is (shortened):

{

 "importFileID": "e3db1fa5-5f8d-4efd-b908-31ca34d3a8e4",

 "jobID": "6c372623-4c84-4ee1-9fc9-ab5d3a835ece",

 "importedBy": "4145b1e1-d1b1-427a-9fc1-f63bae24fef5",

 "fileName": "GDMS-1996b.zip",

 other schedule import properties...,

 "setType": "data upload",

 "title": "Example title",

 other schedule import properties...

}

A 400 error will be returned instead if there is a reason that the task cannot be imported, for example errors

were found during checking (see example 9.4.3.2), it has already been imported or another task has been

imported in parallel that now invalidates this task’s check results. Some time-critical scenarios such as the

latter are not possible to detect until the import scheduling is attempted. Such a failure is permanent for a

task and, if the data still needs to be imported, it would need to be re-uploaded as a new task.

Assuming no error was returned, returning to the details of the upload task, the Task stage will now show as

“Import in progress”.

Endpoint: GET https://api.gdms.assetia.cloud/drainageassets/assetsystem/upload/details/6c372623-4c84-

4ee1-9fc9-ab5d3a835ece

Response:

{

 "jobId": "6c372623-4c84-4ee1-9fc9-ab5d3a835ece",

 "importFileID": "e3db1fa5-5f8d-4efd-b908-31ca34d3a8e4",

 other upload task properties...,

 "taskStage": "Import in progress",

 other upload task properties...

}

This can be refreshed until the Task stage changes to “Import completed”. Once the import is complete, no

further action is required but, if needed, the activity set ID created during the import can be retrieved using

the “upload/ActivitySetId” endpoint and the "importFileID" given above.

Endpoint: GET https://api.gdms.assetia.cloud/drainageassets/assetsystem/upload/ActivitySetId/e3db1fa5-

5f8d-4efd-b908-31ca34d3a8e4

Response:

"233c2f9a-6947-455b-8534-5373ac12ad8a"

To view the details of the activity set, the “activitysetsummary/query” endpoint from Section 9.2 can be used.

Endpoint: POST https://api.gdms.assetia.cloud/drainageassets/activitysetsummary/query

Payload:

{

https://api.gdms.assetia.cloud/drainageassets/assetsystem/upload/details/6c372623-4c84-4ee1-9fc9-ab5d3a835ece
https://api.gdms.assetia.cloud/drainageassets/assetsystem/upload/details/6c372623-4c84-4ee1-9fc9-ab5d3a835ece
https://api.gdms.assetia.cloud/drainageassets/assetsystem/upload/ActivitySetId/e3db1fa5-5f8d-4efd-b908-31ca34d3a8e4
https://api.gdms.assetia.cloud/drainageassets/assetsystem/upload/ActivitySetId/e3db1fa5-5f8d-4efd-b908-31ca34d3a8e4
https://api.gdms.assetia.cloud/drainageassets/activitysetsummary/query

Mott MacDonald

52

Mott MacDonald Restricted

 "ActivitySetIds": [

 "233c2f9a-6947-455b-8534-5373ac12ad8a"

],

 "ArchivedFlag": true

}

Response (shortened):

{

 "results": [

 {

 "activitySetId": "233c2f9a-6947-455b-8534-5373ac12ad8a",

 "visibleId": 25392,

 "area": "50",

 "areaID": "6CE5C5F1-02A3-48DF-87CF-BED517C05395",

 "setReference": "GDMS-1996b 20240910",

 "title": "Example title",

 other activity set properties...,

 "jobID": "6c372623-4c84-4ee1-9fc9-ab5d3a835ece",

 "importFileID": "e3db1fa5-5f8d-4efd-b908-31ca34d3a8e4"

 }

],

 "count": 1,

 "total": 1

}

Note that the activity set details include the “jobID” and “importFileID” for the original upload task, allowing

the data associated with the upload task to be found in future, including for example who uploaded it or

whether any warnings were identified during the checking.

Using the Activity Set ID, other endpoints in the Drainage API can then be queried to return details of the

assets and activities that were imported. For example:

Endpoint: POST https://api.gdms.assetia.cloud/drainageassets/activitysummary/query

Payload:

{

 "ActivitySetId": "233c2f9a-6947-455b-8534-5373ac12ad8a",

 "AssetGeometryType": "Point"

}

“AssetGeometryType” is optional and can be “Point”, “Continuous” or “Region” to only return assets of that

type. If omitted, then all imported assets are returned. Only limited fields are returned, that are common to all

three asset geometry types. Returned fields include “assetGeometryType”, “assetId” and “assetRef”, which

will allow you to query specific asset endpoints for full asset details (see example 9.3.1).

9.4.3.2 With errors

Example: Upload a zip file called “GDMS-1996a.zip”, with an activity set reference of “GDMS-1996a

20240910”, where the upload is not for checking only. This is a test file that is known to contain an error.

As with worked example 9.4.3.1, the upload task is first validated.

Endpoint: POST https://api.gdms.assetia.cloud/drainageassets/assetsystem/upload/validate/GDMS-

1996a%2020240910/false

A POST request is sent to the above endpoint with a payload containing the .zip file. The response is:

https://api.gdms.assetia.cloud/drainageassets/activitysummary/query
https://api.gdms.assetia.cloud/drainageassets/assetsystem/upload/validate/GDMS-1996a%2020240910/false
https://api.gdms.assetia.cloud/drainageassets/assetsystem/upload/validate/GDMS-1996a%2020240910/false

Mott MacDonald

53

Mott MacDonald Restricted

"f1fcb360-46ad-4555-938f-70666042c939"

The details of the upload task are refreshed until the check is complete using the “upload/details” endpoint.

Endpoint: GET https://api.gdms.assetia.cloud/drainageassets/assetsystem/upload/details/f1fcb360-46ad-

4555-938f-70666042c939

Response (shortened):

{

 other upload task details...,

 "taskStage": "Check in progress",

 other upload task details...

}

Response (shortened) a while later:

{

 other upload task details...,

 "taskStage": "Check completed with error(s)",

 other upload task details...,

 "criticalErrors": 0,

 "errors": 1,

 "dataLossWarnings": 0,

 "otherWarnings": 6

}

The details of the upload task show that the Task stage is "Check completed with error(s)" and there is 1

error. The upload task cannot proceed until all errors are addressed.

To return information on the error, the “upload/{errorType}” endpoint is used.

Endpoint: POST https://api.gdms.assetia.cloud/drainageassets/assetsystem/upload/errors

Payload:

{

 "jobId": "f1fcb360-46ad-4555-938f-70666042c939"

}

Response:

{

 "results": [

 {

 "jobId": "f1fcb360-46ad-4555-938f-70666042c939",

 "importFileID": "d233e3e8-e4bb-44e7-9689-208a9237943d",

 other error properties...,

 "errorMessage": "Asset could not be linked to a sub-catchment because all of the
assets in the same system are more than 200m from any sub-catchment",

 other error properties...

 },

 any other errors...

],

 "count": 1,

 "total": 1

}

https://api.gdms.assetia.cloud/drainageassets/assetsystem/upload/details/f1fcb360-46ad-4555-938f-70666042c939
https://api.gdms.assetia.cloud/drainageassets/assetsystem/upload/details/f1fcb360-46ad-4555-938f-70666042c939
https://api.gdms.assetia.cloud/drainageassets/assetsystem/upload/errors

Mott MacDonald

54

Mott MacDonald Restricted

To download the check results as a CSV, the “job/checkResult/export/csv” is used.

Endpoint: POST https://api.gdms.assetia.cloud/drainageassets/job/checkResult/export/csv

Payload:

{

 "jobId": "f1fcb360-46ad-4555-938f-70666042c939"

}

Note that attempting to schedule import of an upload task with errors will result in a 400 error being returned

by the server.

9.4.3.3 Closing a task

Example: Close the upload task created in worked example 9.4.3.1 with ID "6c372623-4c84-4ee1-9fc9-

ab5d3a835ece".

Endpoint: POST https://api.gdms.assetia.cloud/drainageassets/assetsystem/upload/6c372623-4c84-4ee1-

9fc9-ab5d3a835ece/closetask

If the user has access permissions to close a task, sending a POST request to the endpoint above will give a

response of “true” and the upload task will be closed.

Note that the same endpoint is used for closing download tasks.

https://api.gdms.assetia.cloud/drainageassets/job/checkResult/export/csv
https://api.gdms.assetia.cloud/drainageassets/assetsystem/upload/6c372623-4c84-4ee1-9fc9-ab5d3a835ece/closetask
https://api.gdms.assetia.cloud/drainageassets/assetsystem/upload/6c372623-4c84-4ee1-9fc9-ab5d3a835ece/closetask

Mott MacDonald

55

Mott MacDonald Restricted

10 Priority Assets API

Full Swagger documentation for the Priority Assets API is included in the accompanying PriorityAssets.json

file.

10.1 Principal entities

The Priority Assets module contains the following principal entities:

● Priority Asset Risk

● Priority Asset Workflow

● Priority Asset Workflow Activity

These entities are provided for each of the three types of priority asset: culvert, outfall and soakaway.

10.2 Principal endpoint structure

These are the main types of endpoint for this API:

● POST https://api.gdms.assetia.cloud/priorityassets/{asset}{type}/{action}

– return information for multiple priority assets where {asset} is “culvert”, “outfall” or “soakaway”, {type} is

“risk” or “workflow” and {action} is “summary”, “history” or “export”

● POST https://api.gdms.assetia.cloud/priorityassets/{asset}workflow/summary/activity

– return information for multiple activities for priority asset workflows where {asset} is “culvert”, “outfall”

or “soakaway”

● POST https://api.gdms.assetia.cloud/priorityassets/workflow/stages

– return information for multiple workflow stages, the payload of these requests supports some

additional, optional properties, e.g.:

○ "fundingRouteID": a single funding route GUID sent as a string, to return workflow stages for one

funding route

○ "workflowStatusID": a single workflow status GUID sent as a string, to return workflow stages for

one workflow status

● GET https://api.gdms.assetia.cloud/priorityassets/{asset}{type}/summary/{id}

– return information for a single priority asset where {asset} is “culvert”, “outfall” or “soakaway”, {type} is

“risk” or “workflow”, and {id} is the GUID of the priority asset

● GET https://api.gdms.assetia.cloud/priorityassets/picklists/{picklistGroup}

– return the permitted values and IDs for a picklist field, where {picklistGroup} identifies the field, e.g.

“solublepollution”, “mitigationTypes”

10.3 Worked examples

10.3.1 Return risk data for one soakaway asset with a known GUID

Example: return risk data for one soakaway asset with a GUID of “51c51b7a-fcbb-89e7-6c7e-cf6221bf00b6”.

Endpoint: POST https://api.gdms.assetia.cloud/priorityassets/soakawayrisk/summary/query

The GUID is used in the payload as follows:

{

 "soakawayRiskIds": [

https://api.gdms.assetia.cloud/priorityassets/%7basset%7d%7btype%7d/%7baction%7d
https://api.gdms.assetia.cloud/priorityassets/%7basset%7dworkflow/summary/activity
https://api.gdms.assetia.cloud/priorityassets/workflow/stages
https://api.gdms.assetia.cloud/priorityassets/%7basset%7d%7btype%7d/summary/%7bid%7d
https://api.gdms.assetia.cloud/priorityassets/picklists/%7bpicklistGroup%7d
https://api.gdms.assetia.cloud/priorityassets/soakawayrisk/summary/query

Mott MacDonald

56

Mott MacDonald Restricted

 "51c51b7a-fcbb-89e7-6c7e-cf6221bf00b6"

]

}

If the soakaway risk ID is valid, this returns (shortened):

{

 "results": [

 {

 "soakawayID": "51c51b7a-fcbb-89e7-6c7e-cf6221bf00b6",

 "assetRef": "NY0123_4567b",

 "geomType": "Point",

 "assetTypeCode": "SO - Soakaway Chamber",

 "area": 13,

 other soakaway properties...

 }

],

 "count": 1,

 "total": 1

}

The “soakawayRiskId” and “soakawayID” are the same as each other and the asset’s GUID in the Drainage

Assets module.

The approach for culverts and outfalls is the same, replacing “soakaway” with “culvert” or “outfall”

throughout.

If you only know the asset reference of the soakaway rather than its GUID, you can either follow worked

example 9.3.1 to determine the asset’s GUID and then make the above request, or you can add full filter

criteria (see section 2.6.5) against the “assetRef” field to the above request.

10.3.2 Return workflow data for one culvert asset with a known GUID

Example: Return workflow data for one culvert asset with a GUID of “2e54db93-9084-2a8e-b8a6-

d39ac310a4e8”.

Endpoint: POST https://api.gdms.assetia.cloud/priorityassets/culvertworkflow/summary/query

Payload:

{

 "culvertRiskIds": [

 "2e54db93-9084-2a8e-b8a6-d39ac310a4e8"

],

}

Response:

{

 "results": [

 {

 "workflowId": "5ecda017-7c02-c9d9-2a6d-5b7c25500444",

 "workflow": 20247,

 "subCatchment": "SC02227_01",

 "culvertId": "2e54db93-9084-2a8e-b8a6-d39ac310a4e8",

 other workflow details...

https://api.gdms.assetia.cloud/priorityassets/culvertworkflow/summary/query

Mott MacDonald

57

Mott MacDonald Restricted

],

 "count": 1,

 "total": 1

}

The approach for outfalls and soakaways is the same, replacing “culvert” with “outfall” or “soakaway”

throughout.

It should be noted that most priority assets do not have any workflows and therefore an empty “results”

array will commonly be returned.

10.3.3 Return culvert asset data byworkflow status and sub-catchment

Example: return priority asset data for culverts with workflow status “In progress” and within sub-catchment

“SC02279_04”, not including archived assets.

Endpoint: POST https://api.gdms.assetia.cloud/priorityassets/culvertrisk/summary/query

Payload:

{

 "filter": {

 "condition": "AND",

 "filterGroups": [

 {

 "condition": "OR",

 "filters": [

 {

 "operator": "Equals",

 "not": false,

 "field": "currentWorkflowStatus",

 "value": "In Progress"

 }

]

 },

 {

 "condition": "OR",

 "filters": [

 {

 "operator": "Equals",

 "not": false,

 "field": "subCatchment",

 "value": "SC02279_04"

 }

]

 }

]

 },

 "IncludeArchived": false

}

The above “filter” object is equivalent to the following SQL:

WHERE currentWorkflowStatus = 'In progress' AND subCatchment = 'SC02279_04'

https://api.gdms.assetia.cloud/priorityassets/culvertrisk/summary/query

Mott MacDonald

58

Mott MacDonald Restricted

This end point returns (shortened):

{

 "results": [

 {

 "culvertId": "df19bd6a-da14-3d9b-e3e0-2b62913b7aea",

 "assetRef": "SE1234_5678h.1",

 "assetTypeCode": "CU - Culvert",

 "area": 12,

 other culvert properties...

 },

 {

 "culvertId": "ef012c62-e8bc-f059-96be-bcced81f7650",

 "assetRef": "8765_4321b.1",

 "assetTypeCode": "CU - Culvert",

 "area": 12,

 other culvert properties...

 }

],

 "count": 2,

 "total": 7823

}

The approach for outfalls and soakaways is the same, replacing “culvert” with “outfall” or “soakaway”

throughout.

Any of the fields returned in the “results” array of the endpoint can be used in the filter criteria. For example,

include a criterion on the numeric “area” field to filter on assets within an Area.

10.3.4 Determine activity history for an outfall workflow with a known GUID

Example: Determine the activity IDs related to an outfall workflow with a GUID of “7942364e-1213-b100-

ad0b-ee2180eddea2”. To determine the workflow ID you may need to use some of the previous worked

examples in this section, depending on the information you already have.

Endpoint: POST https://api.gdms.assetia.cloud/priorityassets/outfallworkflow/summary/activity

Payload:

{

 "outfallWorkflowIds": [

 "7942364e-1213-b100-ad0b-ee2180eddea2"

]

}

Response (shortened):

{

 "results": [

 {

 "visibleId": 55890,

 "date": "2019-10-28T11:23:17.713",

 "workflow": 55890,

 other activity summary properties...,

 "activityId": "b131c48f-8202-baa5-bb40-73a9a97e7675",

https://api.gdms.assetia.cloud/priorityassets/outfallworkflow/summary/activity

Mott MacDonald

59

Mott MacDonald Restricted

 "workflowId": "7942364e-1213-b100-ad0b-ee2180eddea2",

 "workflowStage": "Other - Desk study complete - field study required (from migrated
priority asset)"

 }

],

 "count": 1,

 "total": 1

}

The most useful information returned by this endpoint will be the “date” and “workflowStage”. All workflows

should include at least one activity, with the most recent activity’s stage corresponding with the workflow’s

current stage.

The approach for culverts and soakaways is the same, replacing “outfall” with “culvert” or “soakaway”

throughout.

Mott MacDonald

60

Mott MacDonald Restricted

11 Floods API

Full Swagger documentation for the Floods API is included in the accompanying Floods.json file.

In the examples in this section, where an output would show a total number of records this is shown as “###”.

11.1 Principal entities

The Floods module contains the following principal entity:

● Flood

11.2 Principal endpoint structure

These are the main types of endpoint for this API:

● GET https://api.gdms.assetia.cloud/floods/flood/{id}

– return information for a single flood where {id} is the flood’s GUID

● POST https://api.gdms.assetia.cloud/floods/flood/{action}

– return information for one or multiple floods where {action} is “query”, “summary” or “history”

● GET https://api.gdms.assetia.cloud/floods/picklists/{picklistGroup}

– return the permitted values and IDs for a picklist field, where {picklistGroup} identifies the field, e.g.

“reportedbys”, “maximumeffects”

● POST https://api.gdms.assetia.cloud/floods/csv/floods

– return flood data in CSV format

11.3 Worked examples

11.3.1 Return data for a flood record where numeric ID only is known

Example: return data for a flood with numeric ID 123.

As the flood GUID is not known, it is necessary to make a filtered request to a multiple results endpoint.

Endpoint: POST https://api.gdms.assetia.cloud/floods/flood/summary/query

As there is only one criterion, the shortened version of the “filter” payload can be used (section 2.6.5.1):

{

 "filter": {

 "filters": [

 {

 "field": "visibleId",

 "not": false,

 "operator": "Equals",

 "value": 123

 }

]

 }

}

https://api.gdms.assetia.cloud/floods/flood/%7bid%7d
https://api.gdms.assetia.cloud/floods/flood/%7baction%7d
https://api.gdms.assetia.cloud/floods/picklists/%7bpicklistGroup%7d
https://api.gdms.assetia.cloud/floods/csv/floods
https://api.gdms.assetia.cloud/floods/flood/summary/query

Mott MacDonald

61

Mott MacDonald Restricted

As there is only one flood with a numeric ID of 123, provided this flood exists, the endpoint will return a

results array containing one flood’s data. This endpoint returns data including human-readable picklist

values as follows (shortened):

{

 "results": [

 {

 "id": "63e1d674-b747-4ee2-8631-db4f123e218c",

 "visibleId": 123,

 "easting": 552753.000000,

 "northing": 344113.000000,

 "geometry": "POINT (552753 344113)",

 "reportedDateTime": "2024-06-03T10:46:00",

 other flood properties...

 }

],

 "count": 1,

 "total": ###

}

If other data for the flood is needed, then the flood’s GUID can be retrieved as results[0].id and passed

into an appropriate endpoint.

11.3.2 Return data for one flood with a known GUID and determine its maximum effect

Example: return data for a flood with GUID “63e1d674-b747-4ee2-8631-db4f123e218c” and determine its

maximum effect.

11.3.2.1 Using the “{id}” and “{picklistGroup}” endpoints

As the flood’s GUID is known, the specific flood can be requested.

Endpoint: GET https://api.gdms.assetia.cloud/floods/flood/63e1d674-b747-4ee2-8631-db4f123e218c

If the flood exists, it will return data as follows (shortened):

{

 "id": "63e1d674-b747-4ee2-8631-db4f123e218c",

 "visibleId": 123,

 "easting": 552753.000000,

 "northing": 344113.000000,

 other flood properties...,

 "maximumEffect": "5619f303-bb62-407b-a434-34ba436eb3cf",

 other flood properties...

}

The maximum effect of the flood is given by the GUID in the “maximumEffect” parameter. This needs to be

converted to its equivalent human-readable picklist value using the “picklists/maximumeffects” endpoint.

Endpoint: GET https://api.gdms.assetia.cloud/floods/picklists/maximumeffects

https://api.gdms.assetia.cloud/floods/flood/63e1d674-b747-4ee2-8631-db4f123e218c
https://api.gdms.assetia.cloud/floods/picklists/maximumeffects

Mott MacDonald

62

Mott MacDonald Restricted

This will return an array of all maximum effects as follows (shortened):

[

 other picklist entries...,

 {

 "id": "5619f303-bb62-407b-a434-34ba436eb3cf",

 "picklistGroup": "e07946a1-3522-4855-9e58-1152080dc8f3",

 "value": "Partial Closure",

 "description": ""

 },

 other picklist entries...

]

The flood’s “maximumEffect” GUID matches the “Partial Closure” picklist entry’s “id”.

The matching picklist value could be returned in JavaScript as follows, assuming the flood data is an object

called “flood” and the picklist data is an array called “maximumEffects”:

maximumEffects.filter(maximumEffect => maximumEffect.id === flood.maximumEffect)[0].value

11.3.2.2 Using the “summary/query” endpoint (human-readable data)

Alternatively, the maximum effect can be determined within one API request by:

Endpoint: POST https://api.gdms.assetia.cloud/floods/flood/summary/query

Payload:

{

 "floodIds": [

 "63e1d674-b747-4ee2-8631-db4f123e218c"

]

}As there is only one flood with a GUID of “63e1d674-b747-4ee2-8631-db4f123e218c”, the endpoint will

return a results array containing one flood’s data (shortened):

{

 "results": [

 {

 "id": "63e1d674-b747-4ee2-8631-db4f123e218c",

 "visibleId": 123,

 "easting": 552753,

 "northing": 344113,

 other flood properties...,

 "maximumEffect": "Partial Closure",

 other flood properties...

 }

],

 "count": 1,

 "total": ###

}

https://api.gdms.assetia.cloud/floods/flood/summary/query

Mott MacDonald

63

Mott MacDonald Restricted

11.3.3 Return floods by reported date and status

Example: Return floods that have a reported date between 01/01/2015 and 31/12/2015 and a status of

“Historic”.

Endpoint: POST https://api.gdms.assetia.cloud/floods/food/summary/query

Payload:

{

 "filter": {

 "condition": "AND",

 "filterGroups": [

 {

 "condition": "OR",

 "filters": [

 {

 "operator": "Equals",

 "not": false,

 "field": "status",

 "value": "Historic"

 }

]

 },

 {

 "condition": "AND",

 "filters": [

 {

 "operator": "LessThan",

 "not": true,

 "field": " reportedDateTime ",

 "value": "2015-01-01"

 },

 {

 "operator": "LessThan",

 "not": false,

 "field": " reportedDateTime ",

 "value": "2016-01-01"

 }

]

 }

],

 },

}

The above “filter” object is equivalent to the following SQL:

WHERE status = 'Historic' AND (reportedDateTime >= '2015-01-01' AND reportedDateTime < '2016-01-
01')

https://api.gdms.assetia.cloud/floods/food/summary/query

Mott MacDonald

64

Mott MacDonald Restricted

Because the “reportedDateTime” is a date/time field, to include all floods at any time on 31/12/2015 you

should query for dates less than 01/01/2016. To query a narrow time band it is possible to also include a time

in the criteria, e.g. 10.30am on 01/01/2015 would be “2015-01-01T10:30:00.000Z”.

This endpoint returns data for floods matching the filter criteria (shortened):

{

 "results": [

 {

 "id": "105a790e-d096-253b-9125-2c1b0c6adaf2",

 "visibleId": 123,

 other flood properties...

 },

 {

 "id": "f796e096-a8a8-51aa-5d3d-f357da969504",

 "visibleId": 456,

 other flood properties...

 },

 other flood results...

],

 "count": ##,

 "total": ###

}

Mott MacDonald

65

Mott MacDonald Restricted

12 Flood Risks API

Full Swagger documentation for the Flood Risks API is included in the accompanying FloodRisks.json file.

12.1 Principal entities

The Flood Risks module contains the following principal entities:

● Sub-catchment Flood Risk

● Flood Risk Workflow

● Flood Risk Workflow Activity

12.2 Principal endpoint structures

These are the main types of endpoint for this API:

● GET https://api.gdms.assetia.cloud/floodrisks/workflow/summary/{id}

– return information for a single workflow where {id} is GUID of the workflow

● GET https://api.gdms.assetia.cloud/floodrisks/floodrisk/summary/{id}

– return flood risk information for a single sub-catchment where {id} is the GUID of the sub-catchment

● POST https://api.gdms.assetia.cloud/floodrisks/workflow/{action}

– return information for multiple flood risk workflows where {action} is “summary”, “history” or “csv”

● POST https://api.gdms.assetia.cloud/floodrisks/floodrisk/{action}

– return flood risk information for multiple sub-catchments where {action} is “summary”, “history” or “csv”

● POST https://api.gdms.assetia.cloud/floodrisks/workflow/activity/summary

– return information for multiple activities

● POST https://api.gdms.assetia.cloud/floodrisks/workflow/stages

– return information for multiple workflow stages

● GET https://api.gdms.assetia.cloud/floodrisks/picklists/{picklistGroup}

– return the permitted values and IDs for a picklist field, where {picklistGroup} identifies the field, e.g.

“fundingRoutes”. “workflowStages”

12.3 Worked examples

12.3.1 Return flood risk details for one sub-catchment with a known GUID

Example: return flood risk data for a sub-catchment with GUID “123456c4-b3d3-295d-794e-bfd14ebb3dae”.

Endpoint: GET https://api.gdms.assetia.cloud/floodrisks/floodRisk/summary/123456c4-b3d3-295d-794e-

bfd14ebb3dae

This endpoint returns (shortened):

{

 "subCatchment": "SC01234_01",

 "areaId": "00844bc1-870c-4c56-9f7c-f949b3eaf81e",

 other flood risk properties...,

 "subCatchmentLength": 1234.51,

 "floodRiskLastCalculated": "2023-12-28T00:00:01.107",

 "floodRiskStatusId": "96d195bf-3887-4f13-b20f-ec75386c7940",

https://api.gdms.assetia.cloud/floodrisks/workflow/summary/%7bid%7d
https://api.gdms.assetia.cloud/floodrisks/floodrisk/summary/%7bid%7d
https://api.gdms.assetia.cloud/floodrisks/workflow/%7baction%7d
https://api.gdms.assetia.cloud/floodrisks/floodrisk/%7baction%7d
https://api.gdms.assetia.cloud/floodrisks/workflow/activity/summary
https://api.gdms.assetia.cloud/floodrisks/workflow/stages
https://api.gdms.assetia.cloud/floodrisks/picklists/%7bpicklistGroup%7d
https://api.gdms.assetia.cloud/floodrisks/floodRisk/summary/123456c4-b3d3-295d-794e-bfd14ebb3dae
https://api.gdms.assetia.cloud/floodrisks/floodRisk/summary/123456c4-b3d3-295d-794e-bfd14ebb3dae

Mott MacDonald

66

Mott MacDonald Restricted

 "floodRiskStatus": "X (Risk Addressed)",

 other flood risk properties...

}

12.3.2 Return all workflows for one sub-catchment with a known GUID

Example: return all workflows associated with a sub-catchment with GUID “123456c4-b3d3-295d-794e-

bfd14ebb3dae”.

Endpoint: POST https://api.gdms.assetia.cloud/floodrisks/workflow/summary

Payload:

{

 "subcatchmentId": "123456c4-b3d3-295d-794e-bfd14ebb3dae",

}

Response:

{

 "results": [

 {

 "workflow": 123,

 "subCatchment": "SC01234_01",

 "areaId": "00844bc1-870c-4c56-9f7c-f949b3eaf81e",

 "area": 14,

 "road": "A1",

 "subCatchmentLength": 6543.51,

 "startDate": "2021-06-18T09:31:02.08",

 "finishedDate": "2023-03-31T09:50:29",

 other workflow properties...

 },

 {

 "workflow": 456,

 "subCatchment": "SC01234_01",

 "areaId": "00844bc1-870c-4c56-9f7c-f949b3eaf81e",

 "area": 14,

 "road": "A1",

 "subCatchmentLength": 6543.51,

 "startDate": "2019-09-06T10:17:21.173",

 "finishedDate": "2023-03-31T10:04:50",

 other workflow properties...

 }

],

 "count": 2,

 "total": 2

}

12.3.3 Return workflows by start date and status for one sub-catchment with a known GUID

Example: return the 3 most recent (by start date) workflows that are “In Progress” for a sub-catchment with

GUID “94e1e140-1ed6-c37c-b165-654321a20618”.

https://api.gdms.assetia.cloud/floodrisks/workflow/summary

Mott MacDonald

67

Mott MacDonald Restricted

Endpoint: POST https://api.gdms.assetia.cloud/floodrisks/workflow/summary

Payload:

{

 "limit": 3,

 "filter": {

 "condition": "AND",

 "filterGroups": [

 {

 "condition": "OR",

 "filters": [

 {

 "field": "workflowStatus",

 "not": false,

 "operator": "Equals",

 "value": "In Progress"

 }

]

 }

]

 },

 "sort": [

 {

 "field": "startDate",

 "direction": "desc"

 }

],

 "subCatchmentId": "94e1e140-1ed6-c37c-b165-654321a20618"

}

Note: "limit" is set to 3 and the sort order is set with the "startDate" field in descending order (most

recent first).

This endpoint will return (shortened):

{

 "results": [

 {

 "workflow": 17,

 "startDate": "2024-09-24T19:19:18.443",

 "workflowStatus": "In Progress",

 "workflowId": "1e515c9a-eb46-434e-a1c9-9a456a91f0ab",

 "subCatchmentId": "94e1e140-1ed6-c37c-b165-654321a20618",

 other workflow details...

 },

 {

 "workflow": 16,

 "startDate": "2024-01-03T12:12:06.503",

 "workflowStatus": "In Progress",

 "workflowId": "070a4ca9-e2f8-406f-8fec-bef770d94def",

 "subCatchmentId": "94e1e140-1ed6-c37c-b165-654321a20618",

 other workflow details...

 },

 {

https://api.gdms.assetia.cloud/floodrisks/workflow/summary

Mott MacDonald

68

Mott MacDonald Restricted

 "workflow": 15,

 "startDate": "2023-03-16T17:00:17.523",

 "workflowStatus": "In Progress",

 "workflowId": "44d8cd94-3f36-4e06-a722-0205958f8df6",

 "subCatchmentId": "94e1e140-1ed6-c37c-b165-654321a20618",

 other workflow details...

 }

],

 "count": 5,

 "total": 5

}

12.3.4 Return details of one workflow with a known GUID

Example: return data for the workflow with GUID “37a47b31-d563-b222-474b-546d995cc41c”.

Endpoint: GET https://api.gdms.assetia.cloud/floodrisks/workflow/summary/37a47b31-d563-b222-474b-

546d995cc41c

This endpoint will return:

{

 "workflow": 123,

 "subCatchment": "SC01234_01",

 other workflow properties...,

 "workflowId": "37a47b31-d563-b222-474b-546d995cc41c",

 "subCatchmentId": "123456c4-b3d3-295d-794e-bfd14ebb3dae",

 "relatedActivityId": "e3a79f45-29ac-1cd3-3de4-014790e0976d",

 other workflow properties...

}

12.3.5 Return all related activities for one workflow with a known GUID

Example: return all activity data for workflow ID “37a47b31-d563-b222-474b-546d995cc41c”.

Endpoint: POST https://api.gdms.assetia.cloud/floodrisks/workflow/activity/summary

Payload:

{

 "workflowId": "37a47b31-d563-b222-474b-546d995cc41c"

}

This will return (shortened):

{

 "results": [

 {

 "visibleId": 1234,

 "date": "2023-03-31T09:50:29",

 "workflow": 123,

 "workflowStage": "Other - Desk study complete - field study required (from migrated
hotspot)",

 other activity properties...,

 "subCatchment": "SC01234_01",

 other activity properties...,

 "activityId": "e3a79f45-29ac-1cd3-3de4-014790e0976d",

 "workflowId": "37a47b31-d563-b222-474b-546d995cc41c",

https://api.gdms.assetia.cloud/floodrisks/workflow/summary/37a47b31-d563-b222-474b-546d995cc41c
https://api.gdms.assetia.cloud/floodrisks/workflow/summary/37a47b31-d563-b222-474b-546d995cc41c
https://api.gdms.assetia.cloud/floodrisks/workflow/activity/summary

Mott MacDonald

69

Mott MacDonald Restricted

 "subCatchmentId": "123456c4-b3d3-295d-794e-bfd14ebb3dae"

 }

],

 "count": 1,

 "total": 1

}

The most useful information returned by this endpoint will be the “date” and “workflowStage”. All workflows

should include at least one activity, with the most recent activity’s stage corresponding with the workflow’s

current stage.

Mott MacDonald

70

Mott MacDonald Restricted

13 Spills API

Full Swagger documentation for the Spills API is included in the accompanying Spills.json file.

In the examples in this section, where an output would show a total number of records this is shown as “###”.

13.1 Principal entities

The Spills module contains the following entity:

● Spill

13.2 Principal endpoint structure

These are the main types of endpoint for this API:

● GET https://api.gdms.assetia.cloud/spills/spill/{id}

– return information for one spill, where {id} is the record’s GUID

● POST https://api.gdms.assetia.cloud/spills/spill/{action}

– return information for one or multiple spills where {action} is “query”, “summary” or “history”

● GET https://api.gdms.assetia.cloud/spills/picklists/{picklistGroup}

– return the permitted values and IDs for a picklist field, where {picklistGroup} identifies the field, e.g.

“cleanupcosts”, “materialtypes”

● POST https://api.gdms.assetia.cloud/spills/csv/spills

– return the spills data in CSV format

13.3 Worked examples

13.3.1 Return spills in a geographical area

Example: return spills located in a rectangular area around the M62 Junction 29. The bounding box

coordinates are 431,500E 427,000N; 433,000E 425,000N.

Endpoint: POST https://api.gdms.assetia.cloud/spills/spill/summary/query

This example will define the area of interest as a closed polygon in WKT notation, for an example of how to

search by geographical area using only filter criteria, see Section 4.3.3.2.

Payload:

{

 "searchGeometry": "POLYGON ((431500 427000, 433000 427000, 433000 425000, 431500 425000, 431500 427000))"

}

Note that the polygon must be closed so for a rectangle there are five pairs of coordinates and the last

coordinate pair (431500 427000) is the same as the first. All coordinates must be to OS grid.

This endpoint returns the data for spills within the specified polygon (shortened):

 {

 "results": [

 {

 "id": " 29ba6bfd-4abc-d2c1-27e1-c12364e95f8e",

 "visibleId": 1,

 other spills properties...

 },

https://api.gdms.assetia.cloud/spills/spill/%7bid%7d
https://api.gdms.assetia.cloud/spills/spill/%7baction%7d
https://api.gdms.assetia.cloud/spills/picklists/%7bpicklistGroup%7d
https://api.gdms.assetia.cloud/spills/csv/spills
https://api.gdms.assetia.cloud/spills/spill/summary/query

Mott MacDonald

71

Mott MacDonald Restricted

 {

 "id": " 5d67cf72-8abc-ca07-4dba-fefb123e4054",

 "visibleId": 2,

 other spills properties...

 },

 other spill results...

],

 "count": #,

 "total": #

}

13.3.2 Return spills by status and road

Example: Return spills data with a status of “Open” on the M6.

Endpoint: POST https://api.gdms.assetia.cloud/spills/spill/summary/query

Payload:

{

 "filter": {

 "condition": "AND",

 "filterGroups": [

 {

 "condition": "OR",

 "filters": [

 {

 "operator": "Equals",

 "not": false,

 "field": "road",

 "value": "M6"

 }

]

 },

 {

 "condition": "OR",

 "filters": [

 {

 "operator": "Equals",

 "not": false,

 "field": "status",

 "value": "Open"

 }

]

 }

],

 }

}

The above “filter” object is equivalent to the following SQL:

WHERE status = 'Open' AND road = 'M6'

This endpoint returns (shortened):

https://api.gdms.assetia.cloud/spills/spill/summary/query

Mott MacDonald

72

Mott MacDonald Restricted

{

 "results": [

 {

 "id": "5ec2225f-ee40-e3ed-a30b-abc8d7878e19",

 "visibleId": 123,

 "easting": 3###14.000000,

 "northing": 3###22.000000,

 other spills properties...

 },

 other spills...

],

 "count": #,

 "total": ###

}

Alternatively, to searching for spills by road name, spills for a catchment can be returned by using the

“catchmentVisibleId” or “catchmentId” (GUID) field in the filter criteria.

Mott MacDonald

73

Mott MacDonald Restricted

14 Projects API

Full Swagger documentation for the Projects API is included in the accompanying Projects.json file.

In the examples in this section, where an output would show a total number of records this is shown as “###”.

14.1 Principal entities

The Projects module contains the following principal entities:

● Project

● Project Link (relationship between one Project and one record (“entity”) that is linked to it)

14.2 Principal endpoint structure

These are the main types of endpoint for this API:

● POST https://api.gdms.assetia.cloud/projects/{action}

– return information for multiple projects where {action} is “summary/query”, “summary/csv” or “history”

● POST https://api.gdms.assetia.cloud/projects/summary/{entity}

– return summary information for multiple entities and projects where {entity} is “drawings”, “reports”,

“drainage”, “inventoryitem”, “conditionsets”, “geotechnicalasset”, “floodriskworkflow” or “geodatasets”

● POST https://api.gdms.assetia.cloud/projects/summary/links/query

– returns a summary of all existing links for a single project

– the payload for this request takes the project ID as a parameter to return all entities (e.g. reports,

geodatasets etc.) that have been linked to a single project

● GET https://api.gdms.assetia.cloud/projects/picklists/{picklistGroup}

– return the permitted values and IDs for a picklist field, where {picklistGroup} identifies the field, e.g.

“projectType”, “linkTypes”

14.3 Worked examples

14.3.1 Return data for a single project with a known GUID

Example: Return data for a project with GUID “83a754ff-a6d2-f32a-be3c-797e50d83ce3”.

Endpoint: POST https://api.gdms.assetia.cloud/projects/summary/query

Payload:

{

 "projectsIds": ["83a754ff-a6d2-f32a-be3c-797e50d83ce3"]

}

Response (shortened):

{

 "results": [

 {

 "projectID": 64,

 "projectTitle": "South Coast M27 J4-11",

 other project properties...

 }

https://api.gdms.assetia.cloud/projects/%7baction%7d
https://api.gdms.assetia.cloud/projects/summary/%7bentity%7d
https://api.gdms.assetia.cloud/projects/summary/links/query
https://api.gdms.assetia.cloud/projects/picklists/%7bpicklistGroup%7d
https://api.gdms.assetia.cloud/projects/summary/query

Mott MacDonald

74

Mott MacDonald Restricted

],

 "count": 1,

 "total": 1

}

14.3.2 Return a summary of drawing sets linked to a project with a known GUID

Example: return a drawing sets summary for a project with GUID “83a754ff-a6d2-f32a-be3c-797e50d83ce3”.

Endpoint: POST https://api.gdms.assetia.cloud/projects/summary/drawings

Payload:

{

 "projectsIds": [

 "83a754ff-a6d2-f32a-be3c-797e50d83ce3"

]

}

Returns (shortened):

{

 "results": [

 {

 "visibleID": 1941,

 "projectID": "83a754ff-a6d2-f32a-be3c-797e50d83ce3",

 "drawingSetID": "e47781f8-a39e-18b3-0aba-21c9b3b8d854",

 "drawingSetRef": "03_1004",

 "title": "Title of Drawing Set",

 other drawing set summary properties...

 },

 {

 "visibleID": 1945,

 "projectID": "83a754ff-a6d2-f32a-be3c-797e50d83ce3",

 "drawingSetID": "744f36b6-c186-af0b-89b6-960dcff64821",

 "drawingSetRef": "03_1005",

 other drawing set summary properties...

 },

 {

 "visibleID": 1946,

 "projectID": "83a754ff-a6d2-f32a-be3c-797e50d83ce3",

 "drawingSetID": "43875fa4-210a-fd5d-894a-fb21cd0cf2a8",

 "drawingSetRef": "03_1006",

 other drawing set summary properties...

 },

 other drawing sets...

],

 "count": ##,

 "total": ##

}

To get full drawing set details, use the “summary/query” endpoint from the Drawings module (15.2) with the

drawing set ID(s) of interest provided in the payload as an array of strings.

https://api.gdms.assetia.cloud/projects/summary/drawings

Mott MacDonald

75

Mott MacDonald Restricted

Endpoint: POST https://api.gdms.assetia.cloud/drawings/summary/query

Payload:

{

 "drawingSetIds": [

 drawing set ID(s) here...

]

}

14.3.3 Determine all entities linked to a single project with a known GUID

Example: find the linked entities for a project with GUID “8bea8082-1aa2-e713-761b-b45fbd2180d1”.

Endpoint: POST https://api.gdms.assetia.cloud/projects/summary/links/query

Payload:

{

 "projectId": "8bea8082-1aa2-e713-761b-b45fbd2180d1"

}

Returns (shortened):

[

 {

 "projectId": "8bea8082-1aa2-e713-761b-b45fbd2180d1",

 "projectNo": 57,

 "entityId": "60af2db7-9cc0-ea58-708a-2d66779748c3",

 "entityTypeId": "96f4499c-08fb-485d-9749-08f19786dc24",

 "entityType": "DrawingSet",

 other entity properties...

 },

 other entities...

]

The “entityType” can be used to determine which other endpoints to call for further information about each

linked entity, along with the “entityId”.

14.3.4 Determine the total number of entities linked to a single project with a known GUID

Example: find the number of linked entities for a project with GUID “8bea8082-1aa2-e713-761b-

b45fbd2180d1”.

To return the number of entities for a given project, the “entity/count/{id}” endpoint is used.

Endpoint: GET https://api.gdms.assetia.cloud/projects/entity/count/8bea8082-1aa2-e713-761b-

b45fbd2180d1

A GET request to this endpoint returns 7.

https://api.gdms.assetia.cloud/drawings/summary/query
https://api.gdms.assetia.cloud/projects/summary/links/query
https://api.gdms.assetia.cloud/projects/entity/count/8bea8082-1aa2-e713-761b-b45fbd2180d1
https://api.gdms.assetia.cloud/projects/entity/count/8bea8082-1aa2-e713-761b-b45fbd2180d1

Mott MacDonald

76

Mott MacDonald Restricted

15 Drawings API

Full Swagger documentation for the Drawings API is included in the accompanying DrawingSets.json file.

In the examples in this section, where an output would show a total number of records this is shown as “###”.

15.1 Principal entities

The Drawings module contains the following principal entities:

● Drawing Set

● Located File

15.2 Principal endpoint structure

These are the main types of endpoint for this API:

● POST https://api.gdms.assetia.cloud/drawings/summary/{action}

– return information for multiple drawing sets where {action} is “query” or “csv”

● POST https://api.gdms.assetia.cloud/drawings/locatedfiles/summary/query

– return information for multiple located files

● GET https://api.gdms.assetia.cloud/drawings/export/locatedfiles/{id}

– export located files for a single drawing set where {id} is the ID of the drawing set

15.3 Worked examples

15.3.1 Return data for all located files within a geographical area

Example: return information on all located files in a rectangular area around the M25 Junction 7. The

bounding box coordinates are 529,600E 153,900N; 532,000E 152,500N.

Endpoint: POST https://api.gdms.assetia.cloud/drawings/locatedfiles/summary/query

Payload:

{

 "searchGeometry": "POLYGON ((529600 153900, 532000 153900, 532000 152500, 529600 152500, 529600 153900))"

}

Response (shortened):

{

 "results": [

 {

 "locatedFileID": "b83e6859-8286-cb14-3351-decac36a0557",

 "visibleId": 8737,

 "drawingSetId": "e178e82e-bdba-03fe-fb2b-c2df929836df",

 other located file properties...

 },

 {

 "locatedFileID": "d62f1bb6-6600-4340-7707-4cdf4967677c",

 "visibleId": 8738,

 "drawingSetId": "e178e82e-bdba-03fe-fb2b-c2df929836df",

 other located file properties...

 },

https://api.gdms.assetia.cloud/drawings/summary/%7baction%7d
https://api.gdms.assetia.cloud/drawings/locatedfiles/summary/query
https://api.gdms.assetia.cloud/drawings/export/locatedfiles/%7bid%7d
https://api.gdms.assetia.cloud/drawings/locatedfiles/summary/query

Mott MacDonald

77

Mott MacDonald Restricted

 other located files...

],

 "count": ##,

 "total": ##

}

15.3.2 Return drawing sets by road and record type

Example: return all as-built drawing sets for the A4.

Endpoint: POST https://api.gdms.assetia.cloud/drawings/summary/query

Payload:

{

 "filter": {

 "condition": "AND",

 "filterGroups": [

 {

 "condition": "OR",

 "filters": [

 {

 "operator": "Equals",

 "not": false,

 "field": "road",

 "value": "A4"

 }

]

 },

 {

 "condition": "OR",

 "filters": [

 {

 "operator": "Equals",

 "not": false,

 "field": "recordType",

 "value": "As-built"

 }

]

 }

],

 },

}

Response (shortened):

{

 "results": [

 {

 "drawingSetId": "68e50039-1d2b-da41-2a3a-42162633767e",

 "visibleId": 634,

 "reference": "02_2008",

 "title": "LONDON BRISTOL TRUNK ROAD",

 other drawing set properties...

https://api.gdms.assetia.cloud/drawings/summary/query

Mott MacDonald

78

Mott MacDonald Restricted

 },

 other drawing sets...

],

 "count": ##,

 "total": ##

}

	1 Introduction
	1.1 Scope of document
	1.2 Document conventions
	1.3 What is a REST API?
	1.4 What is JSON?
	1.5 How does GDMS implement web APIs?
	1.6 Note on worked examples

	2 General information
	2.1 Authentication and authorisation
	2.1.1 General access
	2.1.2 Authentication process
	2.1.2.1 Process overview diagram
	2.1.2.2 Process description

	2.1.3 Authenticated user information

	2.2 Data formats
	2.3 URL structure
	2.4 Unique IDs
	2.4.1 Returning a record based on numeric ID

	2.5 Picklist fields
	2.6 Defining requests for multiple records
	2.6.1 Overview
	2.6.2 Response
	2.6.3 No criteria
	2.6.4 Offset and limit
	2.6.5 Filter criteria
	2.6.5.1 Single criterion
	2.6.5.2 Multiple criteria

	2.6.6 Sort order
	2.6.7 Geographical criteria using Well-Known Text (WKT) polygons
	2.6.8 Request number of records only

	3 Reports Archive API
	3.1 Principal entities
	3.2 Principal endpoint structure
	3.3 Worked examples
	3.3 Worked examples
	3.3.1 Return metadata for a report where numeric ID only is known
	3.3.2 Return details of one report with a known GUID and determine its report type

	4 Exploratory Locations Database (ELDB) API
	4.1 Principal entities
	4.2 Principal endpoint structure
	4.3 Worked examples
	4.3 Worked examples
	4.3.1 Return geodatasets linked to a report
	4.3.2 Return exploratory locations for a geodataset
	4.3.3 Return exploratory locations within a geographical area
	4.3.3.1 Location passed as a Well-Known Text (WKT) polygon
	4.3.3.2 Location passed as filter criteria

	5 Network Model and Locations API
	5.1 Principal entities
	5.2 Principal endpoint structure
	5.3 Worked examples
	5.3.1 Return the list of Areas including IDs and numbers
	5.3.2 Return locations of GAD records

	6 Geotechnical Assets (GAD) API
	6.1 Principal entities
	6.2 Principal endpoint structure
	6.3 Worked examples
	6.3.1 Picklist data
	6.3.2 Return data for a GAD record where numeric ID only is known
	6.3.3 Return items within a set
	6.3.3 Return items within a set
	6.3.4 Return item type specific fields
	6.3.5 Return assets for negative criteria
	6.3.6 Returning archived GAD data

	7 Geotechnical Events API
	7.1 Principal entities
	7.2 Principal endpoint structure
	7.3 Worked examples
	7.3.1 Return geotechnical events by Area and current status
	7.3.1.1 Using the “summary” endpoint (human-readable data)
	7.3.1.2 Using the “query” endpoint (raw data)

	8 Drainage Catchment Model API
	8.1 Principal entities
	8.2 Principal endpoint structure
	8.3 Worked examples
	8.3.1 Determine the GUIDs of all catchments in one Area
	8.3.2 Using the “subcatchment/snap” endpoint
	8.3.2.1 Return sub-catchments adjacent to specified location
	8.3.2.2 Determine nearest sub-catchments within 500m of a specified location

	9 Drainage Assets API
	9.1 Principal entities
	9.2 Principal endpoint structure
	9.3 Worked examples
	9.3.1 Return asset data for one drainage asset where the Unique Asset Reference only is known
	9.3.2 Return observation data for one drainage asset where asset data is known
	9.3.3 Return activity history for one drainage asset with a known GUID
	9.3.4 Return asset data for a component with a known GUID

	9.4 Data round tripping
	9.4.1 Principal endpoint structure
	9.4.2 Downloading Asset Systems
	9.4.2.1 For all asset systems in a single catchment
	9.4.2.2 For a single asset system

	9.4.3 Uploading Asset Systems
	9.4.3.1 Uploading of data requires the data to be in a certain format, an activity set reference, and suitable access permissions. These are described further in the materials referenced at the start of section 9.4Without errors
	9.4.3.2 With errors
	9.4.3.3 Closing a task

	10 Priority Assets API
	10.1 Principal entities
	10.2 Principal endpoint structure
	10.3 Worked examples
	10.3.1 Return risk data for one soakaway asset with a known GUID
	10.3.2 Return workflow data for one culvert asset with a known GUID
	10.3.3 Return culvert asset data byworkflow status and sub-catchment
	10.3.4 Determine activity history for an outfall workflow with a known GUID

	11 Floods API
	11.1 Principal entities
	11.2 Principal endpoint structure
	11.3 Worked examples
	11.3.1 Return data for a flood record where numeric ID only is known
	11.3.2 Return data for one flood with a known GUID and determine its maximum effect
	11.3.2.1 Using the “{id}” and “{picklistGroup}” endpoints
	11.3.2.2 Using the “summary/query” endpoint (human-readable data)

	11.3.3 Return floods by reported date and status

	12 Flood Risks API
	12.1 Principal entities
	12.2 Principal endpoint structures
	12.3 Worked examples
	12.3.1 Return flood risk details for one sub-catchment with a known GUID
	12.3.2 Return all workflows for one sub-catchment with a known GUID
	12.3.3 Return workflows by start date and status for one sub-catchment with a known GUID
	12.3.4 Return details of one workflow with a known GUID
	12.3.5 Return all related activities for one workflow with a known GUID

	13 Spills API
	13.1 Principal entities
	13.2 Principal endpoint structure
	13.3 Worked examples
	13.3.1 Return spills in a geographical area
	13.3.2 Return spills by status and road

	14 Projects API
	14.1 Principal entities
	14.2 Principal endpoint structure
	14.3 Worked examples
	14.3.1 Return data for a single project with a known GUID
	14.3.2 Return a summary of drawing sets linked to a project with a known GUID
	14.3.3 Determine all entities linked to a single project with a known GUID
	14.3.4 Determine the total number of entities linked to a single project with a known GUID

	15 Drawings API
	15.1 Principal entities
	15.2 Principal endpoint structure
	15.3 Worked examples
	15.3.1 Return data for all located files within a geographical area
	15.3.2 Return drawing sets by road and record type

